GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (13)
  • Data
  • 2010-2014  (13)
  • AMBIO: A Journal of the Human Environment  (4)
  • Mitigation and Adaptation Strategies for Global Change  (4)
  • Journal of Soils and Sediments  (3)
  • Ecosystems  (2)
  • 194672
  • 2034
  • 37042
  • 6697
  • 1
    Publication Date: 2012-01-14
    Description: Purpose   Global climate change (GCC), especially global warming, has affected the material cycling (e.g., carbon, nutrients, and organic chemicals) and the energy flows of terrestrial ecosystems. Persistent organic pollutants (POPs) were regarded as anthropogenic organic carbon (OC) source, and be coupled with the natural carbon (C) and nutrient biogeochemical cycling in ecosystems. The objective of this work was to review the current literature and explore potential coupling processes and mechanisms between POPs and biogeochemical cycles of C and nutrients in terrestrial ecosystems induced by global warming. Results and discussion   Global warming has caused many physical, chemical, and biological changes in terrestrial ecosystems. POPs environmental fate in these ecosystems is controlled mainly by temperature and biogeochemical processes. Global warming may accelerate the re-emissions and redistribution of POPs among environmental compartments via soil–air exchange. Soil–air exchange is a key process controlling the fate and transportation of POPs and terrestrial ecosystem C at regional and global scales. Soil respiration is one of the largest terrestrial C flux induced by microbe and plant metabolism, which can affect POPs biotransformation in terrestrial ecosystems. Carbon flow through food web structure also may have important consequences for the biomagnification of POPs in the ecosystems and further lead to biodiversity loss induced by climate change and POPs pollution stress. Moreover, the integrated techniques and biological adaptation strategy help to fully explore the coupling mechanisms, functioning and trends of POPs and C and nutrient biogeochemical cycling processes in terrestrial ecosystems. Conclusions and perspectives   There is increasing evidence that the environmental fate of POPs has been linked with biogeochemical cycles of C and nutrients in terrestrial ecosystems under GCC. However, the relationships between POPs and the biogeochemical cycles of C and nutrients are still not well understood. Further study is needed to explore the coupling mechanisms of POP environmental fate and C biogeochemical cycle by using the integrated techniques under GCC scenario and develop biological and ecological management strategies to mitigate GCC and environmental stressors. Content Type Journal Article Category SOILS, SEC 3 • REMEDIATION AND MANAGEMENT OF CONTAMINATED OR DEGRADED LANDS • REVIEW ARTICLE Pages 1-9 DOI 10.1007/s11368-011-0462-0 Authors Ying Teng, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China Zhihong Xu, Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111, Australia Yongming Luo, Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008 People’s Republic of China Frédérique Reverchon, Environmental Futures Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, QLD 4111, Australia Journal Journal of Soils and Sediments Online ISSN 1614-7480 Print ISSN 1439-0108
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-05
    Description:    Globally, urban growth will add 1.5 billion people to cities by 2030, making the difficult task of urban water provisions even more challenging. In this article, we develop a conceptual framework of urban water provision as composed of three axes: water availability, water quality, and water delivery. For each axis, we calculate quantitative proxy measures for all cities with more than 50,000 residents, and then briefly discuss the strategies cities are using in response if they are deficient on one of the axes. We show that 523 million people are in cities where water availability may be an issue, 890 million people are in cities where water quality may be an issue, and 1.3 billion people are in cities where water delivery may be an issue. Tapping into groundwater is a widespread response, regardless of the management challenge, with many cities unsustainably using this resource. The strategies used by cities deficient on the water delivery axis are different than for cities deficient on the water quantity or water quality axis, as lack of financial resources pushes cities toward a different and potentially less effective set of strategies. Content Type Journal Article Pages 1-10 DOI 10.1007/s13280-011-0152-6 Authors Robert I. McDonald, Worldwide Office, The Nature Conservancy, 4245 N. Fairfax Drive, Arlington, VA 22203, USA Ian Douglas, School of Environment and Development, University of Manchester, Oxford Road, Manchester, M13 9PL UK Carmen Revenga, Worldwide Office, The Nature Conservancy, 4245 N. Fairfax Drive, Arlington, VA 22203, USA Rebecca Hale, School of Life Sciences, Arizona State University, 1711 South Rural Road, Tempe, AZ 85287, USA Nancy Grimm, Faculty of Ecology, Evolution, & Environmental Science, Arizona State University, 1711 South Rural Road, Tempe, AZ 85287, USA Jenny Grönwall, 110 Marlyn Lodge, Portsoken St, London, E1 8RB UK Balazs Fekete, CUNY Research Foundation, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-01-02
    Description:    Within climate change impact research, the consideration of socioeconomic processes remains a challenge. Socioeconomic systems must be equipped to react and adapt to global change. However, any reasonable development or assessment of sustainable adaptation strategies requires a comprehensive consideration of human-environment interactions. This requirement can be met through multi-agent simulation, as demonstrated in the interdisciplinary project GLOWA-Danube (GLObal change of the WAter Cycle; www.glowa-danube.de ). GLOWA-Danube has developed an integrated decision support tool for water and land use management in the Upper Danube catchment (parts of Germany and Austria, 77,000 km 2 ). The scientific disciplines invoked in the project have implemented sixteen natural and social science models, which are embedded in the simulation framework DANUBIA. Within DANUBIA, a multi-agent simulation approach is used to represent relevant socioeconomic processes. The structure and results of three of these multi-agent models, WaterSupply, Household and Tourism, are presented in this paper. A main focus of the paper is on the development of global change scenarios (climate and society) and their application to the presented models. The results of different simulation runs demonstrate the potential of multi-agent models to represent feedbacks between different water users and the environment. Moreover, the interactive usage of the framework allows to define and vary scenario assumptions so as to assess the impact of potential interventions. It is shown that integrated modelling and scenario design not only provide valuable information, but also offer a platform for discussing complex human-environment-interactions with stakeholders. Content Type Journal Article DOI 10.1007/s11027-010-9274-6 Authors Anja Soboll, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Michael Elbers, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Roland Barthel, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Juergen Schmude, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Andreas Ernst, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Ralf Ziller, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-03-18
    Description: Purpose   Managing declining nutrient use efficiency in crop production has been a global priority to maintain high agricultural productivity with finite non-renewable nutrient resources, in particular phosphorus (P). Rapid spectroscopic methods increase measurement density of soil nutrients and improve the accuracy of rates of additional P inputs. Materials and methods   Soil P was measured by a multi-element energy-dispersive X-ray fluorescence spectroscopic (XRFS) method to estimate the spatial distribution of soil total (XRFS-P) and bioavailable P in a Fluvisol occurring on a 20-ha contiguous area comprised of seven elongated field strips under a wheat–maize rotation near the Quzhou Agricultural Experiment Station in the North China Plain. Results and discussion   Soil XRFS-P was highly variable along the length of the field strips and across the entire area after decades of continuous cultivation. A linear relationship existed between XRFS-P and bicarbonate-extractable P or Mehlich 3-extractable P, allowing a description of the spatial distribution of bioavailable P based on XRFS, in both directions of a two-dimensional grid covering the entire area ( p  〈 0.05). Distinct management zones were identified for more precise placement of additional P. Conclusions   Direct element-specific analysis and a high sample throughput make XRFS an indispensable component of a new approach to sustainably manage P, and other macronutrients of low atomic number Z such as K, Ca, or Cl in production fields, based on their site-specific variations in the soil. Concerning P, this rapid precision approach provides a promising avenue to manage soil P as a regionalized variable while preventing zones of deficiency or surplus P that can affect plant productivity or potential loss from a field, respectively. Content Type Journal Article Pages 1-12 DOI 10.1007/s11368-011-0347-2 Authors Thanh H. Dao, USDA-ARS Environmental Management and ByProducts Utilization Laboratory, BARC-East Bldg. 306, Beltsville, MD 20705, USA Yuxin X. Miao, College of Resources and Environmental Science, China Agricultural University, Beijing, People’s Republic of China Fusuo S. Zhang, College of Resources and Environmental Science, China Agricultural University, Beijing, People’s Republic of China Journal Journal of Soils and Sediments Online ISSN 1614-7480 Print ISSN 1439-0108
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-03-22
    Description:    Geoengineering methods are intended to reduce climate change, which is already having demonstrable effects on ecosystem structure and functioning in some regions. Two types of geoengineering activities that have been proposed are: carbon dioxide (CO 2 ) removal (CDR), which removes CO 2 from the atmosphere, and solar radiation management (SRM, or sunlight reflection methods), which reflects a small percentage of sunlight back into space to offset warming from greenhouse gases (GHGs). Current research suggests that SRM or CDR might diminish the impacts of climate change on ecosystems by reducing changes in temperature and precipitation. However, sudden cessation of SRM would exacerbate the climate effects on ecosystems, and some CDR might interfere with oceanic and terrestrial ecosystem processes. The many risks and uncertainties associated with these new kinds of purposeful perturbations to the Earth system are not well understood and require cautious and comprehensive research. Content Type Journal Article Category Review Paper Pages 1-20 DOI 10.1007/s13280-012-0258-5 Authors Lynn M. Russell, Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Dr. Mail Code 0221, La Jolla, CA 92093-0221, USA Philip J. Rasch, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, MSIN K9-34, Richland, WA 99352, USA Georgina M. Mace, Centre for Population Biology, Imperial College London, Ascot, Berks SL5 7PY, UK Robert B. Jackson, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA John Shepherd, Earth System Science, School of Ocean and Earth Sciences, National Oceanography Centre, University of Southampton, European Way, Southampton, SO14 3ZH UK Peter Liss, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ UK Margaret Leinen, Harbor Branch Oceanographic Institute, 5600 US Rt 1 North, Fort Pierce, FL 34946, USA David Schimel, NEON Inc, 1685 38th Street, Boulder, CO 80305, USA Naomi E. Vaughan, Tyndall Centre for Climate Change Research, School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK Anthony C. Janetos, Joint Global Change Research Institute Pacific Northwest National Laboratory/University of Maryland, 5825 University Research Court, Suite 3500, College Park, MD 20740, USA Philip W. Boyd, NIWA Centre of Chemical & Physical Oceanography, Department of Chemistry, University of Otago, Dunedin, New Zealand Richard J. Norby, Environmental Sciences Division, Oak Ridge National Laboratory, Bethel Valley Road, Bldg. 2040, MS-6301, Oak Ridge, TN 37831-6301, USA Ken Caldeira, Department of Global Ecology, Carnegie Institution, Stanford, CA 94305, USA Joonas Merikanto, Division of Atmospheric Sciences, Department of Physics, University of Helsinki, P.O Box 64, 00014 Helsinki, Finland Paulo Artaxo, Institute of Physics, University of São Paulo, Rua do Matão, Travessa R, 187, São Paulo, SP CEP 05508-090, Brazil Jerry Melillo, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA M. Granger Morgan, Department of Engineering and Public Policy, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-08-23
    Description:    To avoid dangerous changes to the climate system, the global mean temperature must not rise more than 2 °C from the 19th century level. The German Advisory Council on Global Change recommends maintaining the rate of change in temperature to within 0.2 °C per decade. This paper supposes that a geoengineering option of solar radiation management (SRM) by injecting aerosol into the Earth’s stratosphere becomes applicable in the future to meet those temperature conditions. However, a failure to continue the use of this option could cause a rapid temperature rebound, and thus we propose a principle of SRM use that the temperature conditions must be satisfied even after SRM termination at any time. We present economically optimal trajectories of the amounts of SRM use and the reduction of carbon dioxide (CO 2 ) emissions under our principle by using an economic model of climate change. To meet the temperature conditions described above, the SRM must reduce radiative forcing by slightly more than 1 W/m 2 at most, and industrial CO 2 emissions must be cut by 80 % by the end of the 21st century relative to 2005, assuming a climate sensitivity of 3 °C. Lower-level use of SRM is required for a higher climate sensitivity; otherwise, the temperature will rise faster in the case of SRM termination. Considering potential economic damages of environmental side effects due to the use of SRM, the contribution of SRM would have to be much smaller. Content Type Journal Article Category Original Article Pages 1-26 DOI 10.1007/s11027-012-9414-2 Authors Takanobu Kosugi, College of Policy Science, Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto, 603-8577 Japan Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-03-30
    Description:    Nitrous oxide (N 2 O) emissions from grazed grasslands are estimated to be approximately 28% of global anthropogenic N 2 O emissions. Estimating the N 2 O flux from grassland soils is difficult because of its episodic nature. This study aimed to quantify the N 2 O emissions, the annual N 2 O flux and the emission factor (EF), and also to investigate the influence of environmental and soil variables controlling N 2 O emissions from grazed grassland. Nitrous oxide emissions were measured using static chambers at eight different grasslands in the South of Ireland from September 2007 to August 2009. The instantaneous N 2 O flux values ranged from -186 to 885.6 μg N 2 O-N m −2  h −1 and the annual sum ranged from 2 ± 3.51 to 12.55 ± 2.83 kg N 2 O-N ha −1  y −1 for managed sites. The emission factor ranged from 1.3 to 3.4%. The overall EF of 1.81% is about 69% higher than the Intergovernmental Panel on Climate Change (IPCC) default EF value of 1.25% which is currently used by the Irish Environmental Protection Agency (EPA) to estimate N 2 O emission in Ireland. At an N applied of approximately 300 kg ha −1  y −1 , the N 2 O emissions are approximately 5.0 kg N 2 O-N ha −1 y −1 , whereas the N 2 O emissions double to approximately 10 kg N ha −1 for an N applied of 400 kg N ha −1  y −1 . The sites with higher fluxes were associated with intensive N-input and frequent cattle grazing. The N 2 O flux at 17°C was five times greater than that at 5°C. Similarly, the N 2 O emissions increased with increasing water filled pore space (WFPS) with maximum N 2 O emissions occurring at 60–80% WFPS. We conclude that N application below 300 kg ha −1  y −1 and restricted grazing on seasonally wet soils will reduce N 2 O emissions. Content Type Journal Article Pages 1-20 DOI 10.1007/s10021-011-9434-x Authors Rashad Rafique, Department of Civil and Environmental Engineering, Centre for Hydrology, Micrometeorology and Climate Change, University College Cork, Cork, Ireland Deirdre Hennessy, Department of Animals &, Grassland Science Research, Teagasc-Moorpark, Fermoy, Ireland Gerard Kiely, Department of Civil and Environmental Engineering, Centre for Hydrology, Micrometeorology and Climate Change, University College Cork, Cork, Ireland Journal Ecosystems Online ISSN 1435-0629 Print ISSN 1432-9840
    Print ISSN: 1432-9840
    Electronic ISSN: 1435-0629
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-07-19
    Description:    This paper reviewed 42 studies of how local knowledge contributes to adaptation to climate and climate change in the Asia-Pacific Region. Most studies focused on traditional ecological or indigenous knowledge. Three simple questions were addressed: (1) How are changes in climate recognized? (2) What is known about how to adapt to changes in climate? (3) How do people learn about how to adapt? Awareness of change is an important element of local knowledge. Changes in climate are recognized at multiple time scales from observations that warn of imminent extreme weather through expectations for the next season to identification of multi-year historical trends. Observations are made of climate, its impact on physical resources, and bio-indicators. Local knowledge about how to adapt can be divided into four major classes: land and water management, physical infrastructure, livelihood strategies, and social institutions. Adaptation actions vary with time scale of interest from dealing with risks of disaster from extreme weather events, through slow onset changes such as seasonal droughts, to dealing with long-term multi-year shifts in climate. Local knowledge systems differ in the capacities and ways in which they support learning. Many are dynamic and draw on information from other places, whereas others are more conservative and tightly institutionalized. Past experience of events and ways of learning may be insufficient for dealing with a novel climate. Once the strengths and limitations of local knowledge (like those of science) are grasped the opportunities for meaningful hybridization of scientific and local knowledge for adaptation expand. Content Type Journal Article Pages 1-20 DOI 10.1007/s11027-012-9407-1 Authors Louis Lebel, Unit for Social and Environmental Research, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-10-25
    Description: Purpose   The sensitivity of soil organic carbon to global change drivers, according to the depth profile, is receiving increasing attention because of its importance in the global carbon cycle and its potential feedback to climate change. A better knowledge of the vertical distribution of SOC and its controlling factors—the aim of this study—will help scientists predict the consequences of global change. Materials and methods   The study area was the Murcia Province (S.E. Spain) under semiarid Mediterranean conditions. The database used consists of 312 soil profiles collected in a systematic grid, each 12 km 2 covering a total area of 11,004 km 2 . Statistical analysis to study the relationships between SOC concentration and control factors in different soil use scenarios was conducted at fixed depths of 0–20, 20–40, 40–60, and 60–100 cm. Results and discussion   SOC concentration in the top 40 cm ranged between 6.1 and 31.5 g kg −1 , with significant differences according to land use, soil type and lithology, while below this depth, no differences were observed (SOC concentration 2.1–6.8 g kg −1 ). The ANOVA showed that land use was the most important factor controlling SOC concentration in the 0–40 cm depth. Significant differences were found in the relative importance of environmental and textural factors according to land use and soil depth. In forestland, mean annual precipitation and texture were the main predictors of SOC, while in cropland and shrubland, the main predictors were mean annual temperature and lithology. Total SOC stored in the top 1 m in the region was about 79 Tg with a low mean density of 7.18 kg Cm −3 . The vertical distribution of SOC was shallower in forestland and deeper in cropland. A reduction in rainfall would lead to SOC decrease in forestland and shrubland, and an increase of mean annual temperature would adversely affect SOC in croplands and shrubland. With increasing depth, the relative importance of climatic factors decreases and texture becomes more important in controlling SOC in all land uses. Conclusions   Due to climate change, impacts will be much greater in surface SOC, the strategies for C sequestration should be focused on subsoil sequestration, which was hindered in forestland due to bedrock limitations to soil depth. In these conditions, sequestration in cropland through appropriate management practices is recommended. Content Type Journal Article Category SOILS, SEC 1 • SOIL ORGANIC MATTER DYNAMICS AND NUTRIENT CYCLING • RESEARCH ARTICLE Pages 1-13 DOI 10.1007/s11368-012-0617-7 Authors Juan Albaladejo, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Roque Ortiz, Agricultural Chemistry, Geology and Soil Science Department, Murcia University, Campus de Espinardo, 30100 Murcia, Spain Noelia Garcia-Franco, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Antonio Ruiz Navarro, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Maria Almagro, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Javier Garcia Pintado, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Maria Martínez-Mena, Soil and Water Conservation Department, CEBAS-CSIC (Spanish Research Council), Campus de Espinardo, 30100 Murcia, Spain Journal Journal of Soils and Sediments Online ISSN 1614-7480 Print ISSN 1439-0108
    Print ISSN: 1439-0108
    Electronic ISSN: 1614-7480
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-09-03
    Description:    Before climate change is considered in long-term coastal management, it is necessary to investigate how institutional stakeholders in coastal management conceptualize climate change, as their awareness will ultimately affect their actions. Using questionnaires in eight Baltic Sea riparian countries, this study examines environmental managers’ awareness of climate change. Our results indicate that problems related to global warming are deemed secondary to short-term social and economic issues. Respondents agree that problems caused by global warming will become increasingly important, but pay little attention to adaptation and mitigation strategies. Current environmental problems are expected to continue to be urgent in the future. We conclude that an apparent gap exists between decision making, public concerns, and scientific consensus, resulting in a situation in which the latest evidence rarely influences commonly held opinions. Content Type Journal Article Pages 645-655 DOI 10.1007/s13280-012-0327-9 Authors Joanna Piwowarczyk, Department of Marine Ecology, Institute of Oceanology, Polish Academy of Sciences, 55 Powstancow Warszawy Street, 81-712 Sopot, Poland Anders Hansson, Centre for Climate Science and Policy Research and Water and Environmental Studies, Department of Thematic Studies, Linköping University, Norrköping, Sweden Mattias Hjerpe, Centre for Climate Science and Policy Research and Water and Environmental Studies, Department of Thematic Studies, Linköping University, Norrköping, Sweden Boris Chubarenko, Atlantic Branch of the Institute of Oceanology, Russian Academy of Sciences, Kaliningrad, Russia Konstantin Karmanov, Atlantic Branch of the Institute of Oceanology, Russian Academy of Sciences, Kaliningrad, Russia Journal AMBIO: A Journal of the Human Environment Online ISSN 1654-7209 Print ISSN 0044-7447 Journal Volume Volume 41 Journal Issue Volume 41, Number 6
    Print ISSN: 0044-7447
    Electronic ISSN: 1654-7209
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer on behalf of The Royal Swedish Academy of Sciences.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...