GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (2)
  • 2010-2014  (2)
  • 2013
  • 2011  (2)
  • Aquatic Sciences - Research Across Boundaries  (1)
  • Chinese Science Bulletin  (1)
  • 1469
  • 41064
  • 1
    Publication Date: 2011-09-13
    Description:    The condition of many wetlands across Australia has deteriorated due to increased water regulation and the expansion and intensification of agriculture and increased urban and industrial expansion. Despite this situation, a comprehensive overview of the distribution and condition of wetlands across Australia is not available. Regional analyses exist and several exemplary mapping and monitoring exercises have been maintained to complement the more general information sets. It is expected that global climate change will exacerbate the pressures on inland wetlands, while sea level rises will adversely affect coastal wetlands. It is also expected that the exacerbation of these pressures will increase the potential for near-irreversible changes in the ecological state of some wetlands. Concerted institutional responses to such pressures have in the past proven difficult to sustain, although there is some evidence that a more balanced approach to water use and agriculture is being developed with the provision of increasing funds to purchase water for environmental flows being one example. We identify examples from around Australia that illustrate the impacts on wetlands of long-term climate change from palaeoecological records (south-eastern Australia); water allocation (Murray-Darling Basin); dryland salinisation (south-western Australia); and coastal salinisation (northern Australia). These are provided to illustrate both the extent of change in wetlands and the complexity of differentiating the specific effects of climate change. An appraisal of the main policy responses by government to climate change is provided as a basis for further considering the opportunities for mitigation and adaptation to climate change. Content Type Journal Article Category Effects of Climate Change on Wetlands Pages 1-21 DOI 10.1007/s00027-011-0232-5 Authors C. M. Finlayson, Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia J. A. Davis, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia P. A. Gell, Centre for Environmental Management, School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, VIC 3353, Australia R. T. Kingsford, Australian Rivers and Wetland Centre, University of New South Wales, Sydney, Australia K. A. Parton, Institute for Land, Water and Society, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia Journal Aquatic Sciences - Research Across Boundaries Online ISSN 1420-9055 Print ISSN 1015-1621
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-09-03
    Description:    Soil carbon stocks and sequestration have been given a lot of attention recently in the study of terrestrial ecosystems and global climate change. This review focuses on the progress made on the estimation of the soil carbon stocks of China, and the characterization of carbon dynamics of croplands with regard to climate change, and addresses issues on the mineralization of soil organic carbon in relation to greenhouse gas emissions. By integrating existing research data, China’s total soil organic carbon (SOC) stock is estimated to be 90 Pg and its inorganic carbon (SIC) stock as 60 Pg, with SOC sequestration rates in the range of 20–25 Tg/a for the last two decades. An estimation of the biophysical potential of SOC sequestration has been generally agreed as being 2 Pg over the long term, of which only 1/3 could be attainable using contemporary agricultural technologies in all of China’s croplands. Thus, it is critical to enhance SOC sequestration and mitigate climate change to improve agricultural and land use management in China. There have been many instances where SOC accumulation may not induce an increased amount of decomposition under a warming scenario but instead favor improved cropland productivity and ecosystem functioning. Furthermore, unchanged or even decreased net global warming potential (GWP) from croplands with enhanced SOC has been reported by a number of case studies using life cycle analysis. Future studies on soil carbon stocks and the sequestration potential of China are expected to focus on: (1) Carbon stocks and the sequestration capacity of the earths’ surface systems at scales ranging from the plot to the watershed and (2) multiple interface processes and the synergies between carbon sequestration and ecosystem productivity and ecosystem functioning at scales from the molecular level to agro-ecosystems. Soil carbon science in China faces new challenges and opportunities to undertake integrated research applicable to many areas. Content Type Journal Article Category Review Pages 1-11 DOI 10.1007/s11434-011-4693-7 Authors JuFeng Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Kun Cheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China GenXing Pan, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Pete Smith, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU UK LianQing Li, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XuHui Zhang, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China JinWei Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XiaoJun Han, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China YanLing Du, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Journal Chinese Science Bulletin Online ISSN 1861-9541 Print ISSN 1001-6538
    Print ISSN: 1001-6538
    Electronic ISSN: 1861-9541
    Topics: Natural Sciences in General
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...