GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (12)
  • Environmental Science and Pollution Research  (5)
  • Chinese Science Bulletin  (3)
  • Aquatic Sciences - Research Across Boundaries  (2)
  • Chinese Geographical Science  (2)
  • 1469
  • 41064
  • 5981
  • 87369
  • 1
    Publication Date: 2012-05-01
    Description: Introduction   The paper analyses the environment pollution state in different case studies of economic activities (i.e. co-generation electric and thermal power production, iron profile manufacturing, cement processing, waste landfilling, and wood furniture manufacturing), evaluating mainly the environmental cumulative impacts (e.g. cumulative impact against the health of the environment and different life forms). Materials and methods   The status of the environment (air, water resources, soil, and noise) is analysed with respect to discharges such as gaseous discharges in the air, final effluents discharged in natural receiving basins or sewerage system, and discharges onto the soil together with the principal pollutants expressed by different environmental indicators corresponding to each specific productive activity. The alternative methodology of global pollution index ( I GP * ) for quantification of environmental impacts is applied. Results and discussion   Environmental data analysis permits the identification of potential impact, prediction of significant impact, and evaluation of cumulative impact on a commensurate scale by evaluation scores (ES i ) for discharge quality, and global effect to the environment pollution state by calculation of the global pollution index ( I GP * ). Conclusions   The I GP * values for each productive unit (i.e. 1.664–2.414) correspond to an ‘environment modified by industrial/economic activity within admissible limits, having potential of generating discomfort effects’. The evaluation results are significant in view of future development of each productive unit and sustain the economic production in terms of environment protection with respect to a preventive environment protection scheme and continuous measures of pollution control. Content Type Journal Article Category Short Research and Discussion Article Pages 1-8 DOI 10.1007/s11356-012-0883-3 Authors Carmen Zaharia, Department of Environmental Engineering and Management, Faculty of Chemical Engineering and Environmental Protection, ‘Gheorghe Asachi’ Technical University of Iasi, 73 Prof. Dr. docent D. Mangeron Blvd, 700050 Iasi, Romania Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-11-12
    Description: The need for an integrated approach to the global challenge of POPs management Content Type Journal Article Category Editorial Pages 1-6 DOI 10.1007/s11356-012-1247-8 Authors Roland Weber, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark Gulchohra Aliyeva, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark John Vijgen, International HCH and Pesticide Association, Elmevej 14, 2840 Holte, Denmark Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-05-03
    Description: Introduction   The Consolider-Ingenio 2010 project SCARCE, with the full title “Assessing and predicting effects on water quantity and quality in Iberian Rivers caused by global change” aims to examine and predict the relevance of global change on water availability, water quality, and ecosystem services in Mediterranean river basins of the Iberian Peninsula, as well as their socio-economic impacts. Starting in December 2009, it brought together a multidisciplinary team of 11 partner Spanish institutions, as well as the active involvement of water authorities, river basin managers, and other relevant agents as stakeholders. Methods   The study areas are the Llobregat, Ebro, Jucar, and Guadalquivir river basins. These basins have been included in previous studies and projects, the majority of whom considered some of the aspects included in SCARCE but individually. Historical data will be used as a starting point of the project but also to obtain longer time series. The main added value of SCARCE project is the inclusion of scientific disciplines ranging from hydrology, geomorphology, ecology, chemistry, and ecotoxicology, to engineering, modeling, and economy, in an unprecedented effort in the Mediterranean area. The project performs data mining, field, and lab research as well as modeling and upscaling of the findings to apply them to the entire river basin. Results   Scales ranging from the laboratory to river basins are addressed with the potential to help improve river basin management. The project emphasizes, thus, linking basic research and management practices in a single framework. In fact, one of the main objectives of SCARCE is to act as a bridge between the scientific and the management and to transform research results on management keys and tools for improving the River Basin Management Plans. Here, we outline the general structure of the project and the activities conducted within the ten Work Packages of SCARCE. Content Type Journal Article Category Research Article Pages 918-933 DOI 10.1007/s11356-011-0566-5 Authors Alícia Navarro-Ortega, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain Vicenç Acuña, ICRA, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain Ramon J. Batalla, UdL/CTFC, Alcalde Rovira Roure 191, 25198 Lleida, Spain Julián Blasco, ICMAN-CSIC, Campus Rio San Pedro, 11510 Puerto Real, Cádiz, Spain Carlos Conde, UPM, Avda. Ramiro de Maeztu 7, 28040 Madrid, Spain Francisco J. Elorza, UPM, Avda. Ramiro de Maeztu 7, 28040 Madrid, Spain Arturo Elosegi, UPV/EHU, Barrio Sarriena s/n, 48940 Leioa, Spain Félix Francés, UPV, Camino de Vera s/n, Valencia, Spain Francesc La-Roca, UV, Avda. Blasco Ibáñez 13, Valencia, Spain Isabel Muñoz, UB, Av. Diagonal, 645, 08028 Barcelona, Spain Mira Petrovic, ICRA, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain Yolanda Picó, UV, Avda. Blasco Ibáñez 13, Valencia, Spain Sergi Sabater, ICRA, Edifici H2O, Emili Grahit, 101, 17003 Girona, Spain Xavier Sanchez-Vila, UPC, Carrer Jordi Girona 31, Barcelona, Spain Marta Schuhmacher, ETSEQ, URV, Campus Sescelades, 43007 Tarragona, Spain Damià Barceló, IDAEA-CSIC, Jordi Girona, 18-26, 08034 Barcelona, Spain Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344 Journal Volume Volume 19 Journal Issue Volume 19, Number 4
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-09-13
    Description:    The condition of many wetlands across Australia has deteriorated due to increased water regulation and the expansion and intensification of agriculture and increased urban and industrial expansion. Despite this situation, a comprehensive overview of the distribution and condition of wetlands across Australia is not available. Regional analyses exist and several exemplary mapping and monitoring exercises have been maintained to complement the more general information sets. It is expected that global climate change will exacerbate the pressures on inland wetlands, while sea level rises will adversely affect coastal wetlands. It is also expected that the exacerbation of these pressures will increase the potential for near-irreversible changes in the ecological state of some wetlands. Concerted institutional responses to such pressures have in the past proven difficult to sustain, although there is some evidence that a more balanced approach to water use and agriculture is being developed with the provision of increasing funds to purchase water for environmental flows being one example. We identify examples from around Australia that illustrate the impacts on wetlands of long-term climate change from palaeoecological records (south-eastern Australia); water allocation (Murray-Darling Basin); dryland salinisation (south-western Australia); and coastal salinisation (northern Australia). These are provided to illustrate both the extent of change in wetlands and the complexity of differentiating the specific effects of climate change. An appraisal of the main policy responses by government to climate change is provided as a basis for further considering the opportunities for mitigation and adaptation to climate change. Content Type Journal Article Category Effects of Climate Change on Wetlands Pages 1-21 DOI 10.1007/s00027-011-0232-5 Authors C. M. Finlayson, Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia J. A. Davis, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia P. A. Gell, Centre for Environmental Management, School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, VIC 3353, Australia R. T. Kingsford, Australian Rivers and Wetland Centre, University of New South Wales, Sydney, Australia K. A. Parton, Institute for Land, Water and Society, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia Journal Aquatic Sciences - Research Across Boundaries Online ISSN 1420-9055 Print ISSN 1015-1621
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-11-10
    Description:    This review reports background information on wetlands in the Northeast Asia and High Asia areas, including wetland coverage and type, significance for local populations, and threats to their vitality and protection, with particular focus on the relationship of how global change influenced wetlands. Natural wetlands in these areas have been greatly depleted and degraded, largely due to global climate change, drainage and conversion to agriculture and silviculture, hydrologic alterations, exotics invasions, and misguided management policies. Global warming has caused wetland and ice-sheet loss in High Asia and permafrost thawing in tundra wetlands in Northeast Asia, and hence induced enormous reductions in water-storage sources in High Asia and carbon loss in Northeast Asia. This, in the long term, will exacerbate chronic water shortage and positively feed back global warming. Recently, better understanding of the vital role of healthy wetland ecosystems to Asia’s sustainable economic development has led to major efforts in wetland conservation and restoration. Nonetheless, collaborative efforts to restore and protect the wetlands must involve not only the countries of Northeast and High Asia but also international agencies. Research has been productive but the results should be more effectively integrated with policy-making and wetland restoration practices under future climatic scenarios. Content Type Journal Article Category Research Article Pages 1-9 DOI 10.1007/s00027-012-0281-4 Authors Shuqing An, The State Key Laboratory of Pollution Control and Resource Reuse, The Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093 People’s Republic of China Ziqiang Tian, River and Coastal Environment Research Center, Chinese Research Academy of Environmental Sciences, Beijing, 100012 People’s Republic of China Ying Cai, The State Key Laboratory of Pollution Control and Resource Reuse, The Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093 People’s Republic of China Teng Wen, The State Key Laboratory of Pollution Control and Resource Reuse, The Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093 People’s Republic of China Delin Xu, The State Key Laboratory of Pollution Control and Resource Reuse, The Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093 People’s Republic of China Hao Jiang, The State Key Laboratory of Pollution Control and Resource Reuse, The Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093 People’s Republic of China Zhigang Yao, The Wetland Management Station, Jiangsu Administrate of Forestry, Nanjing, 210036 People’s Republic of China Baohua Guan, The Institute of Geography and Limnology, China Academy of Science, Nanjing, 210008 People’s Republic of China Sheng Sheng, The State Key Laboratory of Pollution Control and Resource Reuse, The Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093 People’s Republic of China Yan Ouyang, The State Key Laboratory of Pollution Control and Resource Reuse, The Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing, 210093 People’s Republic of China Xiaoli Cheng, Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074 People’s Republic of China Journal Aquatic Sciences - Research Across Boundaries Online ISSN 1420-9055 Print ISSN 1015-1621
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-02
    Description: Background,   aim, and scope Fujian reservoirs in southeast China are important water resources for economic and social sustainable development, although few have been studied previously. In recent years, growing population and increasing demands for water shifted the focus of many reservoirs from flood control and irrigation water to drinking water. However, most of them showed a rapid increase in the level of eutrophication, which is one of the most serious and challenging environmental problems. In this study, we investigated the algae community characteristics, trophic state, and eutrophication control strategies for typical subtropical reservoirs in southeast Fujian. Materials and methods   Surface water samples were collected using polyvinyl chloride (PVC) plastic bottles from 11 Fujian reservoirs in summer 2010. Planktonic algae were investigated by optical microscopy. Water properties were determined according to the national standard methods. Results and discussion   Shallow reservoirs generally have higher values of trophic state index (TSI) and appear to be more susceptible to anthropogenic disturbance than deeper reservoirs. A total of 129 taxa belonging to eight phyla (i.e., Bacillariophyta, Chlorophyta, Chrysophyta, Cryptophyta, Cyanophyta, Euglenophyta, Pyrrophyta, Xanthophyta) were observed and the most diverse groups were Chlorophyta (52 taxa), Cyanophyta (20 taxa), Euglenophyta (17 taxa), Chrysophyta (14 taxa). The dominant groups were Chlorophyta (40.58%), Cyanophyta (22.91%), Bacillariophyta (21.61%), Chrysophyta (6.91%). The species richness, abundance, diversity, and evenness of algae varied significantly between reservoirs. TSI results indicated that all 11 reservoirs were eutrophic, three of them were hypereutrophic, six were middle eutrophic, and two were light eutrophic. There was a strong positive correlation between algal diversity and TSI at P  〈 0.05. Our canonical correspondence analysis (CCA) results illustrated that temperature, transparency, conductivity, DO, TC, NH 4 -N, NO x -N, TP, and chlorophyll a were significant environmental variables affecting the distribution of algae communities. The transparency and chlorophyll a were the strongest environmental factors in explaining the community data. Furthermore, the degradation of water quality associated with excess levels of nitrogen and phosphorus in Fujian reservoirs may be impacted by interactions among agriculture and urban factors. A watershed-based management strategy, especially phosphorus control, should be developed for drinking water source protection and sustainable reservoirs in the future. Conclusion and recommendations   All investigated reservoirs were eutrophicated based on the comprehensive TSI values; thus, our results provided an early warning of water degradation in Fujian reservoirs. Furthermore, the trophic state plays an important role in shaping community structure and in determining species diversity of algae. Therefore, long-term and regular monitoring of Euglenophyta, Cyanophyta, TN, TP and chlorophyll a in reservoirs is urgently needed to further understand the future trend of eutrophication and to develop a watershed-based strategy to manage the Cyanophyta bloom hazards. Content Type Journal Article Category Urbanization in China and its Environmental Impact Pages 1432-1442 DOI 10.1007/s11356-011-0683-1 Authors Jun Yang, Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021 China Xiaoqing Yu, Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021 China Lemian Liu, Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen, 361021 China Wenjing Zhang, State Key Laboratory of Marine Environmental Science, Marine Biodiversity and Global Change Center, College of Ocean and Earth Sciences, Xiamen University, 108 Daxue Road, Xiamen, 361005 China Peiyong Guo, Department of Environmental Science and Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021 Fujian, China Journal Environmental Science and Pollution Research Online ISSN 1614-7499 Print ISSN 0944-1344 Journal Volume Volume 19 Journal Issue Volume 19, Number 5
    Print ISSN: 0944-1344
    Electronic ISSN: 1614-7499
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-04-17
    Description:    Severe water erosion is notorious for its harmful effects on land-water resources as well as local societies. The scale effects of water erosion, however, greatly exacerbate the difficulties of accurate erosion evaluation and hazard control in the real world. Analyzing the related scale issues is thus urgent for a better understanding of erosion variations as well as reducing such erosion. In this review article, water erosion dynamics across three spatial scales including plot, watershed, and regional scales were selected and discussed. For the study purposes and objectives, the advantages and disadvantages of these scales all demonstrate clear spatial-scale dependence. Plot scale studies are primarily focused on abundant data collection and mechanism discrimination of erosion generation, while watershed scale studies provide valuable information for watershed management and hazard control as well as the development of quantitatively distributed models. Regional studies concentrate more on large-scale erosion assessment, and serve policymakers and stakeholders in achieving the basis for regulatory policy for comprehensive land uses. The results of this study show that the driving forces and mechanisms of water erosion variations among the scales are quite different. As a result, several major aspects contributing to variations in water erosion across the scales are stressed: differences in the methodologies across various scales, different sink-source roles on water erosion processes, and diverse climatic zones and morphological regions. This variability becomes more complex in the context of accelerated global change. The changing climatic factors and earth surface features are considered the fourth key reason responsible for the increased variability of water erosion across spatial scales. Content Type Journal Article Pages 127-143 DOI 10.1007/s11769-012-0524-2 Authors Wei Wei, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Liding Chen, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Lei Yang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Bojie Fu, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Ranhao Sun, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Journal Chinese Geographical Science Online ISSN 1993-064X Print ISSN 1002-0063 Journal Volume Volume 22 Journal Issue Volume 22, Number 2
    Print ISSN: 1002-0063
    Electronic ISSN: 1993-064X
    Topics: Geography
    Published by Springer on behalf of Science Press.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-09-03
    Description:    Soil carbon stocks and sequestration have been given a lot of attention recently in the study of terrestrial ecosystems and global climate change. This review focuses on the progress made on the estimation of the soil carbon stocks of China, and the characterization of carbon dynamics of croplands with regard to climate change, and addresses issues on the mineralization of soil organic carbon in relation to greenhouse gas emissions. By integrating existing research data, China’s total soil organic carbon (SOC) stock is estimated to be 90 Pg and its inorganic carbon (SIC) stock as 60 Pg, with SOC sequestration rates in the range of 20–25 Tg/a for the last two decades. An estimation of the biophysical potential of SOC sequestration has been generally agreed as being 2 Pg over the long term, of which only 1/3 could be attainable using contemporary agricultural technologies in all of China’s croplands. Thus, it is critical to enhance SOC sequestration and mitigate climate change to improve agricultural and land use management in China. There have been many instances where SOC accumulation may not induce an increased amount of decomposition under a warming scenario but instead favor improved cropland productivity and ecosystem functioning. Furthermore, unchanged or even decreased net global warming potential (GWP) from croplands with enhanced SOC has been reported by a number of case studies using life cycle analysis. Future studies on soil carbon stocks and the sequestration potential of China are expected to focus on: (1) Carbon stocks and the sequestration capacity of the earths’ surface systems at scales ranging from the plot to the watershed and (2) multiple interface processes and the synergies between carbon sequestration and ecosystem productivity and ecosystem functioning at scales from the molecular level to agro-ecosystems. Soil carbon science in China faces new challenges and opportunities to undertake integrated research applicable to many areas. Content Type Journal Article Category Review Pages 1-11 DOI 10.1007/s11434-011-4693-7 Authors JuFeng Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Kun Cheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China GenXing Pan, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Pete Smith, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU UK LianQing Li, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XuHui Zhang, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China JinWei Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XiaoJun Han, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China YanLing Du, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Journal Chinese Science Bulletin Online ISSN 1861-9541 Print ISSN 1001-6538
    Print ISSN: 1001-6538
    Electronic ISSN: 1861-9541
    Topics: Natural Sciences in General
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-03-13
    Description:    Since Westman (1977) and Ehrlich (1982) put forward the concepts of “the service of nature” and “ecosystem service functions”, respectively, methods for conducting value accounting for them, and their practical application have become the subjects of intense study. Based on an overview of available research findings, we discuss three scientific hypotheses. First, the terrestrial ecosystem offers both positive and negative service functions. Second, changes in terrestrial ecosystem service functions lie not only in the number of ecosystem types and the coverage area of each type, but also in their quality. Third, the value of terrestrial ecosystem service functions should be assessed both in terms of the value stocked and the value added. We collected land use data from China during the period 1999–2008, and Normalized Difference Vegetation Index data based on remote sensing images from the Global Inventory Modeling and Mapping Studies for the same period. We then calculated and analyzed spatial and temporal changes in China’s terrestrial ecosystem service values over the 10-year period. Considering temporal change, the total value (stocked) of China’s terrestrial ecosystem service functions decreased from 6.82 trillion Yuan RMB in 1999 to 6.57 trillion Yuan RMB in 2008. During that period, the positive value decreased by 240.17 billion Yuan RMB and the negative value increased by 8.85 billion Yuan RMB. The decrease in total value lies mainly in the humidity control, soil formation, and waste recycling functions. The total value (added) of China’s terrestrial ecosystem service functions increased by 4.31 billion Yuan RMB in 2000, but decreased by 0.13 billion Yuan RMB in 2008 (based on the constant price of China in 1999). The value (added) was a negative figure. From the perspective of spatial change, we can see that the supply of China’s terrestrial ecosystem service functions fell slightly over the past 10 years, mainly in Northeast and Southern China. As a result of human activities on ecosystems, the loss of ecosystem service functions’ value was relatively prominent in Shanxi and Gansu provinces, compared with an increase in value in Shaanxi Province. Terrestrial ecosystem service functions’ value per unit area was relatively high in mid- and East China, showing a prominent spatial change over the 10-year period, but low in Western China. Some conclusions are drawn after an in-depth analysis of the factors causing the spatial and temporal changes in China’s terrestrial ecosystem service functions, in the hope that our suggestions will be helpful for the management of China’s terrestrial ecosystems. Content Type Journal Article Category Article Pages 1-12 DOI 10.1007/s11434-012-4978-5 Authors Yao Shi, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China RuSong Wang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China JinLou Huang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China WenRui Yang, Beijing Municipal Institute of City Planning and Design, Beijing, 100045 China Journal Chinese Science Bulletin Online ISSN 1861-9541 Print ISSN 1001-6538
    Print ISSN: 1001-6538
    Electronic ISSN: 1861-9541
    Topics: Natural Sciences in General
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-11-12
    Description:    In this paper, we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change. The framework highlights the positive effects of human activities in the coupled human and natural system (CHANS) by introducing adaptive capacity as an evaluation criterion. A built-in regional vulnerability to a certain hazard was generated based upon interaction of three dimensions of vulnerability: exposure, sensitivity and adaptive capacity. We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia of the northern China, where drought hazard is the key threat to the CHANS. Specific indices were produced to translate such climate variance and social-economic differences into specific indicators. The results showed that the most exposed regions are the inner land areas, while counties located in the eastern part are potentially the most adaptive ones. Ordos City and Bayannur City are most frequently influenced by multiple climate variances, showing highest sensitivity. Analysis also indicated that differences in the ability to adapt to changes are the main causes of spatial differences. After depiction of the spatial differentiations and analysis of the reasons, climate zones were divided to depict the differences in facing to the drought threats. The climate zones were shown to be similar to vulnerability zones based on the quantitative structure of indexes drafted by a triangular map. Further analysis of the composition of the vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective because of their limited time scope. This research will be a demonstration of how to combine the three dimensions by quantitative methods and will thus provide a guide for government to vulnerability reduction management. Content Type Journal Article Pages 1-13 DOI 10.1007/s11769-012-0583-4 Authors Xiaoqian Liu, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China Yanglin Wang, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China Jian Peng, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China K. Braimoh Ademola, Global Land Project, Sapporo Nodal Office, Hokkaido University, Sapporo, 060-0809 Japan He Yin, Geomatics Laboratory, Geography Department, Humboldt-Universität zu Berlin, Berlin, 10099 Germany Journal Chinese Geographical Science Online ISSN 1993-064X Print ISSN 1002-0063
    Print ISSN: 1002-0063
    Electronic ISSN: 1993-064X
    Topics: Geography
    Published by Springer on behalf of Science Press.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...