GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (2)
  • 2010-2014  (2)
  • 2013  (1)
  • 2011  (1)
  • Aquatic Sciences - Research Across Boundaries  (1)
  • Stanford Journal of Law, Science, and Policy  (1)
  • 1469
  • 195768
  • 1
    Publication Date: 2011-09-13
    Description:    The condition of many wetlands across Australia has deteriorated due to increased water regulation and the expansion and intensification of agriculture and increased urban and industrial expansion. Despite this situation, a comprehensive overview of the distribution and condition of wetlands across Australia is not available. Regional analyses exist and several exemplary mapping and monitoring exercises have been maintained to complement the more general information sets. It is expected that global climate change will exacerbate the pressures on inland wetlands, while sea level rises will adversely affect coastal wetlands. It is also expected that the exacerbation of these pressures will increase the potential for near-irreversible changes in the ecological state of some wetlands. Concerted institutional responses to such pressures have in the past proven difficult to sustain, although there is some evidence that a more balanced approach to water use and agriculture is being developed with the provision of increasing funds to purchase water for environmental flows being one example. We identify examples from around Australia that illustrate the impacts on wetlands of long-term climate change from palaeoecological records (south-eastern Australia); water allocation (Murray-Darling Basin); dryland salinisation (south-western Australia); and coastal salinisation (northern Australia). These are provided to illustrate both the extent of change in wetlands and the complexity of differentiating the specific effects of climate change. An appraisal of the main policy responses by government to climate change is provided as a basis for further considering the opportunities for mitigation and adaptation to climate change. Content Type Journal Article Category Effects of Climate Change on Wetlands Pages 1-21 DOI 10.1007/s00027-011-0232-5 Authors C. M. Finlayson, Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia J. A. Davis, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia P. A. Gell, Centre for Environmental Management, School of Science and Engineering, University of Ballarat, PO Box 663, Ballarat, VIC 3353, Australia R. T. Kingsford, Australian Rivers and Wetland Centre, University of New South Wales, Sydney, Australia K. A. Parton, Institute for Land, Water and Society, Charles Sturt University, PO Box 883, Orange, NSW 2800, Australia Journal Aquatic Sciences - Research Across Boundaries Online ISSN 1420-9055 Print ISSN 1015-1621
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-03-18
    Description: Global climate change is exerting profound effects on organisms and ecosystems. As resource managers and policymakers must contend with the ongoing and future effects of global climate change, they challenge scientists to predict where, when, and with what magnitude these effects are most likely to occur. By understanding the processes by which human-managed and natural ecosystems respond to a changing climate, and by quantifying levels of confidence in our ability to predict these effects, we may be able to prepare for some of these impacts, a form of adaptation to climate change. Here, we describe how knowledge of physiology can help to inform management decisions. Because physiological tolerance to environmental factors varies between species, there will likely be “winners” and “losers” in the face of climate change. We explore how a failure to consider the details of an organism’s physiology and ecology can hamper efforts to respond proactively to climate change and, conversely, how an understanding of how nonhuman organisms interact with their environment can help to provide a framework for anticipating and preparing for future changes in natural and managed ecosystems. We examine some of the physiological responses of marine organisms to climate change in three examples: thermal stress in marine invertebrates, ramifications of water temperature changes on fish bioenergetics and thus on fish reproduction and growth, and effects of changes in wave forces on damage to corals and kelp. Because factors such as temperature interact with other stressors like overexploitation and pollution to drive patterns of mortality, it may be possible to prevent some damage by reducing the impact of stressors not related to climate change. Methods such as ecological forecasting and the utilization of bioenergetic budgets can be used to help guide future adaptation to climate change by providing forecasts within a probabilistic framework. Author:  Brian Helmuth Lauren Yamane Katharine J. Mach Shilpi Chhotray Phil Levin Sarah Woodin Issue:  Climate change Download:  61_Helmuth Final.pdf
    Electronic ISSN: 2161-2331
    Topics: Natural Sciences in General , Political Science , Law
    Published by Stanford University
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...