GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Zeitschriften
  • Artikel  (3)
  • Springer  (3)
  • IUGG Secretariat, GFZ German Research Centre for Geosciences
  • 2010-2014  (3)
  • Chinese Geographical Science  (2)
  • Environmental Earth Sciences  (1)
  • 115599
  • 87369
  • 1
    Publikationsdatum: 2012-04-17
    Beschreibung:    Severe water erosion is notorious for its harmful effects on land-water resources as well as local societies. The scale effects of water erosion, however, greatly exacerbate the difficulties of accurate erosion evaluation and hazard control in the real world. Analyzing the related scale issues is thus urgent for a better understanding of erosion variations as well as reducing such erosion. In this review article, water erosion dynamics across three spatial scales including plot, watershed, and regional scales were selected and discussed. For the study purposes and objectives, the advantages and disadvantages of these scales all demonstrate clear spatial-scale dependence. Plot scale studies are primarily focused on abundant data collection and mechanism discrimination of erosion generation, while watershed scale studies provide valuable information for watershed management and hazard control as well as the development of quantitatively distributed models. Regional studies concentrate more on large-scale erosion assessment, and serve policymakers and stakeholders in achieving the basis for regulatory policy for comprehensive land uses. The results of this study show that the driving forces and mechanisms of water erosion variations among the scales are quite different. As a result, several major aspects contributing to variations in water erosion across the scales are stressed: differences in the methodologies across various scales, different sink-source roles on water erosion processes, and diverse climatic zones and morphological regions. This variability becomes more complex in the context of accelerated global change. The changing climatic factors and earth surface features are considered the fourth key reason responsible for the increased variability of water erosion across spatial scales. Content Type Journal Article Pages 127-143 DOI 10.1007/s11769-012-0524-2 Authors Wei Wei, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Liding Chen, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Lei Yang, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Bojie Fu, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Ranhao Sun, State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085 China Journal Chinese Geographical Science Online ISSN 1993-064X Print ISSN 1002-0063 Journal Volume Volume 22 Journal Issue Volume 22, Number 2
    Print ISSN: 1002-0063
    Digitale ISSN: 1993-064X
    Thema: Geographie
    Publiziert von Springer im Namen von Science Press.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2012-11-12
    Beschreibung:    In this paper, we proposed a framework for evaluating the performance of ecosystem strategies prepared for enhancing vulnerability reduction in the face of hazards due to climate change. The framework highlights the positive effects of human activities in the coupled human and natural system (CHANS) by introducing adaptive capacity as an evaluation criterion. A built-in regional vulnerability to a certain hazard was generated based upon interaction of three dimensions of vulnerability: exposure, sensitivity and adaptive capacity. We illustrated the application of this framework in the temperate farming-grazing transitional zone in the middle Inner Mongolia of the northern China, where drought hazard is the key threat to the CHANS. Specific indices were produced to translate such climate variance and social-economic differences into specific indicators. The results showed that the most exposed regions are the inner land areas, while counties located in the eastern part are potentially the most adaptive ones. Ordos City and Bayannur City are most frequently influenced by multiple climate variances, showing highest sensitivity. Analysis also indicated that differences in the ability to adapt to changes are the main causes of spatial differences. After depiction of the spatial differentiations and analysis of the reasons, climate zones were divided to depict the differences in facing to the drought threats. The climate zones were shown to be similar to vulnerability zones based on the quantitative structure of indexes drafted by a triangular map. Further analysis of the composition of the vulnerability index showed that the evaluation criteria were effective in validating the spatial differentiation but potentially ineffective because of their limited time scope. This research will be a demonstration of how to combine the three dimensions by quantitative methods and will thus provide a guide for government to vulnerability reduction management. Content Type Journal Article Pages 1-13 DOI 10.1007/s11769-012-0583-4 Authors Xiaoqian Liu, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China Yanglin Wang, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China Jian Peng, Laboratory for Earth Surface Processes, Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China K. Braimoh Ademola, Global Land Project, Sapporo Nodal Office, Hokkaido University, Sapporo, 060-0809 Japan He Yin, Geomatics Laboratory, Geography Department, Humboldt-Universität zu Berlin, Berlin, 10099 Germany Journal Chinese Geographical Science Online ISSN 1993-064X Print ISSN 1002-0063
    Print ISSN: 1002-0063
    Digitale ISSN: 1993-064X
    Thema: Geographie
    Publiziert von Springer im Namen von Science Press.
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2012-06-16
    Beschreibung:    The area of study lies at the northeastern part of Nile Delta. Global shoreline regression and sea-level rise have their own-bearing on the groundwater salinization due to seawater intrusion. A new adopted approach for vulnerability mapping using the hydrochemical investigations, geographic information system and a weighted multi-criteria decision support system (WMCDSS) was developed to determine the trend of groundwater contamination by seawater intrusion. Six thematic layers were digitally integrated and assigned different weights and rates. These have been created to comprise the most decisive criteria used for the delineation of groundwater degradation due to seawater intrusion. These criteria are represented by the total dissolved solids, well discharge, sodium adsorption ratio, hydrochemical parameter (Cl/HCO 3 ), hydraulic conductivity and water types. The WMCDSS modeling was tried, where a groundwater vulnerability map with four classes ranging from very low to high vulnerability was gained. The map pinpointed the promising localities for groundwater protection, which are almost represented by the very low or low vulnerability areas (53.69 % of the total study area). The regions having high and moderate groundwater vulnerability occupy 46.31 % of total study area, which designate to a deteriorated territory of groundwater quality, and needs special treatment and cropping pattern before use. However, the moderate groundwater vulnerability class occupies an area of about 28.77 % of the total mapped area, which highlighted the need for certain management practices to prevent the saltwater intrusion from expanding further to the south. There was a good correlation of the constructed vulnerability map with the recently gathered water quality data and hydrochemical facies evolution. The plotting of water quality data on Piper trilinear diagram revealed the evolution of freshwater into the mixing and the saline zones as an impact of seawater intrusion, which validates the model results. Content Type Journal Article Category Original Article Pages 1-19 DOI 10.1007/s12665-012-1740-x Authors Hossam H. Elewa, National Authority for Remote Sensing and Space Sciences (NARSS), P.O. Box 1564, 23 Jozef Brows Tito St., El Nozha El-Gedida, Alf-Maskan, Cairo, 11769 Egypt Ragaa E. Shohaib, Chemistry Department, Faculty of Science, Zagazig University, Zagazig, Egypt Atef A. Qaddah, Geological Hazards Research Unit, Faculty of Earth Sciences, King Abdulaziz University, Jeddah, Saudi Arabia Ahmad M. Nousir, Geology Department, Faculty of Science, Zagazig University, Zagazig, Egypt Journal Environmental Earth Sciences Online ISSN 1866-6299 Print ISSN 1866-6280
    Print ISSN: 1866-6280
    Digitale ISSN: 1866-6299
    Thema: Geologie und Paläontologie
    Publiziert von Springer
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...