GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books
  • Journals
  • Articles  (9)
  • OceanRep
  • Journal of Vegetation Science  (5)
  • Mitigation and Adaptation Strategies for Global Change  (4)
  • 10369
  • 6697
  • 1
    Publication Date: 2011-01-02
    Description:    Within climate change impact research, the consideration of socioeconomic processes remains a challenge. Socioeconomic systems must be equipped to react and adapt to global change. However, any reasonable development or assessment of sustainable adaptation strategies requires a comprehensive consideration of human-environment interactions. This requirement can be met through multi-agent simulation, as demonstrated in the interdisciplinary project GLOWA-Danube (GLObal change of the WAter Cycle; www.glowa-danube.de ). GLOWA-Danube has developed an integrated decision support tool for water and land use management in the Upper Danube catchment (parts of Germany and Austria, 77,000 km 2 ). The scientific disciplines invoked in the project have implemented sixteen natural and social science models, which are embedded in the simulation framework DANUBIA. Within DANUBIA, a multi-agent simulation approach is used to represent relevant socioeconomic processes. The structure and results of three of these multi-agent models, WaterSupply, Household and Tourism, are presented in this paper. A main focus of the paper is on the development of global change scenarios (climate and society) and their application to the presented models. The results of different simulation runs demonstrate the potential of multi-agent models to represent feedbacks between different water users and the environment. Moreover, the interactive usage of the framework allows to define and vary scenario assumptions so as to assess the impact of potential interventions. It is shown that integrated modelling and scenario design not only provide valuable information, but also offer a platform for discussing complex human-environment-interactions with stakeholders. Content Type Journal Article DOI 10.1007/s11027-010-9274-6 Authors Anja Soboll, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Michael Elbers, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Roland Barthel, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Juergen Schmude, Department of Geography, University of Munich, Luisenstrasse 37, 80333 Munich, Germany Andreas Ernst, Center for Environmental Systems Research, University of Kassel, Kurt-Wolters-Strasse 3, 34109 Kassel, Germany Ralf Ziller, Institute of Hydraulic Engineering, University of Stuttgart, Pfaffenwaldring 7a, 70569 Stuttgart, Germany Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-07
    Description: The field of ecoinformatics provides concepts, methods and standards to guide management and analysis of ecological data with particular emphasis on exploration of co-occurrences of organisms and their linkage to environmental conditions and taxon attributes. In this editorial, introducing the Special Feature ‘Ecoinformatics and global change’, we reflect on the development of ecoinformatics and explore its importance for future global change research with special focus on vegetation-plot data. We show how papers in this Special Feature illustrate important directions and approaches in this emerging field. We suggest that ecoinformatics has the potential to make profound contributions to pure and applied sciences, and that the analyses, databases, meta-databases, data exchange formats and analytical tools presented in this Special Feature advance this approach to vegetation science and illustrate and address important open questions. We conclude by describing important future directions for the development of the field including incentives for data sharing, creation of tools for more robust statistical analysis, utilities for integration of data that conform to divergent taxonomic standards, and databases that provide detailed plot-specific data so as to allow users to find and access data appropriate to their research needs.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-23
    Description:    To avoid dangerous changes to the climate system, the global mean temperature must not rise more than 2 °C from the 19th century level. The German Advisory Council on Global Change recommends maintaining the rate of change in temperature to within 0.2 °C per decade. This paper supposes that a geoengineering option of solar radiation management (SRM) by injecting aerosol into the Earth’s stratosphere becomes applicable in the future to meet those temperature conditions. However, a failure to continue the use of this option could cause a rapid temperature rebound, and thus we propose a principle of SRM use that the temperature conditions must be satisfied even after SRM termination at any time. We present economically optimal trajectories of the amounts of SRM use and the reduction of carbon dioxide (CO 2 ) emissions under our principle by using an economic model of climate change. To meet the temperature conditions described above, the SRM must reduce radiative forcing by slightly more than 1 W/m 2 at most, and industrial CO 2 emissions must be cut by 80 % by the end of the 21st century relative to 2005, assuming a climate sensitivity of 3 °C. Lower-level use of SRM is required for a higher climate sensitivity; otherwise, the temperature will rise faster in the case of SRM termination. Considering potential economic damages of environmental side effects due to the use of SRM, the contribution of SRM would have to be much smaller. Content Type Journal Article Category Original Article Pages 1-26 DOI 10.1007/s11027-012-9414-2 Authors Takanobu Kosugi, College of Policy Science, Ritsumeikan University, 56-1 Toji-in Kitamachi, Kita-ku, Kyoto, 603-8577 Japan Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-02-24
    Description: Questions: What are the most likely environmental drivers for compositional herb layer changes as indicated by trait differences between winner and loser species? Location: Weser-Elbe region (NW Germany). Methods: We resurveyed the herb layer communities of ancient forest patches on base-rich sites of 175 semi-permanent plots. Species traits were tested for their ability to discriminate between winner and loser species using logistic regression analyses and deviance partitioning. Results: Of 115 species tested, 31 were identified as winner species and 30 as loser species. Winner species had higher seed longevity, flowered later in the season and more often had an oceanic distribution compared to loser species. Loser species tended to have a higher specific leaf area, were more susceptible to deer browsing and had a performance optimum at higher soil pH compared to winner species. The loser species also represented several ancient forest and threatened species. Deviance partitioning indicated that local drivers (i.e. disturbance due to forest management) were primarily responsible for the species shifts, while regional drivers (i.e. browsing pressure and acidification from atmospheric deposition) and global drivers (i.e. climate warming) had moderate effects. There was no evidence that canopy closure, drainage or eutrophication contributed to herb layer changes. Conclusions: The relative importance of the different drivers as indicated by the winner and loser species differs from that found in previous long-term studies. Relating species traits to species performance is a valuable tool that provides insight into the environmental drivers that are most likely responsible for herb layer changes.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-19
    Description:    This paper reviewed 42 studies of how local knowledge contributes to adaptation to climate and climate change in the Asia-Pacific Region. Most studies focused on traditional ecological or indigenous knowledge. Three simple questions were addressed: (1) How are changes in climate recognized? (2) What is known about how to adapt to changes in climate? (3) How do people learn about how to adapt? Awareness of change is an important element of local knowledge. Changes in climate are recognized at multiple time scales from observations that warn of imminent extreme weather through expectations for the next season to identification of multi-year historical trends. Observations are made of climate, its impact on physical resources, and bio-indicators. Local knowledge about how to adapt can be divided into four major classes: land and water management, physical infrastructure, livelihood strategies, and social institutions. Adaptation actions vary with time scale of interest from dealing with risks of disaster from extreme weather events, through slow onset changes such as seasonal droughts, to dealing with long-term multi-year shifts in climate. Local knowledge systems differ in the capacities and ways in which they support learning. Many are dynamic and draw on information from other places, whereas others are more conservative and tightly institutionalized. Past experience of events and ways of learning may be insufficient for dealing with a novel climate. Once the strengths and limitations of local knowledge (like those of science) are grasped the opportunities for meaningful hybridization of scientific and local knowledge for adaptation expand. Content Type Journal Article Pages 1-20 DOI 10.1007/s11027-012-9407-1 Authors Louis Lebel, Unit for Social and Environmental Research, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, 50200 Thailand Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-07-07
    Description: Tropical forests are biologically diverse ecosystems that play important roles in the carbon cycle and maintenance of global biodiversity. Understanding how tropical forests respond to environmental changes is important, as changes in carbon storage can modulate the rate and magnitude of climate change. Applying an ecoinformatics approach for managing long-term forest inventory plot data, where individual trees are tracked over time, facilitates regional and cross-continental forest research to evaluate changes in taxonomic composition, growth, recruitment and mortality rates, and carbon and biomass stocks. We developed ForestPlots.net as a secure, online inventory data repository and to facilitate data management of long-term tropical forest plots to promote scientific collaborations among independent researchers. The key novel features of the database are: (a) a design that efficiently deals with time-series data; (b) data management tools to assess potential errors; and (c) a query library to generate outputs (e.g. biomass and carbon stock changes over time).
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-11-25
    Description:    Socio-economic and climatic stresses affect local communities’ vulnerability to flooding. Better incorporation of socio-economic stress in local vulnerability assessments is important when planning for climate adaptation. This is rarely done due to insufficient understanding of their interaction, in both theory and practice. The omission leads to critical weaknesses in local adaptation strategies. This study analyses how socio-economic stress interact with climatic stress and shape local vulnerability to flooding, and how such stress can be more efficiently managed within local government organisations. A framework containing potential stresses was developed and applied to investigate how socio-economic stress affected exposure, sensitivity, and adaptive capacity in two case studies, using interview and group exercise transcripts. Cases consisted of major development projects in two Swedish municipalities, Gothenburg and Lilla Edet. The cases were similarly exposed to climatic stress but differed in socio-economic context, and previous professional climate change experience. Fierce foreign competition and market structure were seen as the two most significant socio-economic stresses influencing local vulnerability to flooding through shaping the ‘local’ worldview. In falling order sensitivity, exposure, and adaptive capacity were seen to be influenced by the socio-economic stresses. Two approaches to efficiently incorporate climatic and socio-economic stress in local management are proposed: shifting the focus of vulnerability assessments towards future sensitivity of people and settlements, rather than on the current infrastructure’s sensitivity, would facilitate their use in planning and by ‘mainstreaming’ adaptation into long-term strategic planning vulnerability would be more dynamically addressed and periodically revised. Content Type Journal Article Category Original Article Pages 1-16 DOI 10.1007/s11027-011-9337-3 Authors Mattias Hjerpe, Centre for Climate Science and Policy Research and Water and Environmental Studies - Department for Thematic Studies, Linköping University, Nya Kåkenhus, SE-601 74 Norrköping, Sweden Erik Glaas, Centre for Climate Science and Policy Research and Water and Environmental Studies - Department for Thematic Studies, Linköping University, Nya Kåkenhus, SE-601 74 Norrköping, Sweden Journal Mitigation and Adaptation Strategies for Global Change Online ISSN 1573-1596 Print ISSN 1381-2386
    Print ISSN: 1381-2386
    Electronic ISSN: 1573-1596
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-10-04
    Description: Questions The study of naturally discontinuous forest systems could help further our understanding of the relative roles of abiotic factors and spatial connectivity in influencing species turnover and plant metacommunity structure compared to continuous forest formations where local communities are often arbitrarily defined and where ‘mass effects’ and source-sink dynamics tend to confound the roles of dispersal and environment. Here we study a tropical montane landscape where old-growth evergreen forest occurs as patchy formations in a matrix of natural grasslands, to test the influence of environment and connectivity on species turnover and woody plant metacommunity structure . Location The study area consists of the western and southern regions of the Upper Nilgiri Plateau in the Western Ghats of Southern India, a global biodiversity hotspot . Methods We sampled 85 vegetation plots located across a 600 km2 landscape, assembled environmental data, constructed contrasting spatial connectivity models, including models for the effects of topography on structural connectivity, and used RDA-based variation partitioning to assess the relative influence of environment and space on woody plant metacommunity structure . Results Considering several environmental and multi-scale spatial predictors, we could explain half the variation in plant community structure. Environmental and habitat factors such as precipitation, temperature seasonality, elevation, fragment size and landscape context play a dominant role and explain 42% of variation. Spatial predictors based on Euclidean distance performed better than those that accounted for topographical resistance. Spatial predictors accounted for only 9% of the variation in plant metacommunity structure . Conclusion Our results support the species sorting paradigm of metacommunity structure, as abiotic effects and biotic interactions play dominant roles in influencing community structure and species turnover in these old growth forests with a comparatively small influence of spatial connectivity. Effective management of woody species diversity would therefore require conservation of these forests across the range of environmental conditions under which they occur . This article is protected by copyright. All rights reserved.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-03-27
    Description: Questions As biodiversity losses increase due to global change and human-induced habitat destruction, the relationships between plant traits and ecosystem properties can provide a new level of understanding ecosystem complexity. Using a functional response–effect approach, we show that multiple components of the carbon cycle are determined by a few plant traits, which in turn are strongly affected by environmental conditions. Location Salt marshes, northwest Germany. Methods We explored responses of morphological, chemical and biomass-related plant traits to environmental drivers and examined their effects on carbon cycle properties, i.e. above-ground biomass, above-ground net primary productivity and decomposition. The combined analysis between environmental parameters, functional traits and ecosystem properties used structural equation modelling (SEM). Results Important response and effect traits were leaf dry matter content (LDMC) and below-ground dry mass (BDM, responding to groundwater level and salinity) and leaf C:N ratio (responding to inundation frequency). Inundation and salinity led to increased allocation to below-ground biomass and salt stress adaptation in leaves, which translated into increased decomposition rates. Release from these abiotic controls resulted in standing biomass accumulation, which was controlled by LDMC and canopy height as key traits. Conclusions These findings demonstrate the interacting effects of non-consumable environmental factors and soil resources on morphological, chemical and biomass traits, which affected carbon cycle properties. Loss of species from the community has the potential to change the relationships between environment and vegetation-based ecosystem properties and therefore elicit effects on the multifunctionality of the entire and adjacent ecosystems. Studying relationships between plant traits and ecosystem properties can provide new insight into ecosystem complexity. We ask how plant species traits respond to environmental conditions and how key effect traits determine carbon related ecosystem properties in salt marshes of NW-Germany. Our study reveals interacting effects of environmental factors on morphological, chemical and biomass traits and gives recommendations for conservation management.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...