GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (4)
  • 2010-2014  (4)
  • 2013
  • 2011  (4)
  • Journal of Vegetation Science  (3)
  • Chinese Science Bulletin  (1)
  • 10369
  • 41064
  • 1
    Publication Date: 2011-07-07
    Description: The field of ecoinformatics provides concepts, methods and standards to guide management and analysis of ecological data with particular emphasis on exploration of co-occurrences of organisms and their linkage to environmental conditions and taxon attributes. In this editorial, introducing the Special Feature ‘Ecoinformatics and global change’, we reflect on the development of ecoinformatics and explore its importance for future global change research with special focus on vegetation-plot data. We show how papers in this Special Feature illustrate important directions and approaches in this emerging field. We suggest that ecoinformatics has the potential to make profound contributions to pure and applied sciences, and that the analyses, databases, meta-databases, data exchange formats and analytical tools presented in this Special Feature advance this approach to vegetation science and illustrate and address important open questions. We conclude by describing important future directions for the development of the field including incentives for data sharing, creation of tools for more robust statistical analysis, utilities for integration of data that conform to divergent taxonomic standards, and databases that provide detailed plot-specific data so as to allow users to find and access data appropriate to their research needs.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-02-24
    Description: Questions: What are the most likely environmental drivers for compositional herb layer changes as indicated by trait differences between winner and loser species? Location: Weser-Elbe region (NW Germany). Methods: We resurveyed the herb layer communities of ancient forest patches on base-rich sites of 175 semi-permanent plots. Species traits were tested for their ability to discriminate between winner and loser species using logistic regression analyses and deviance partitioning. Results: Of 115 species tested, 31 were identified as winner species and 30 as loser species. Winner species had higher seed longevity, flowered later in the season and more often had an oceanic distribution compared to loser species. Loser species tended to have a higher specific leaf area, were more susceptible to deer browsing and had a performance optimum at higher soil pH compared to winner species. The loser species also represented several ancient forest and threatened species. Deviance partitioning indicated that local drivers (i.e. disturbance due to forest management) were primarily responsible for the species shifts, while regional drivers (i.e. browsing pressure and acidification from atmospheric deposition) and global drivers (i.e. climate warming) had moderate effects. There was no evidence that canopy closure, drainage or eutrophication contributed to herb layer changes. Conclusions: The relative importance of the different drivers as indicated by the winner and loser species differs from that found in previous long-term studies. Relating species traits to species performance is a valuable tool that provides insight into the environmental drivers that are most likely responsible for herb layer changes.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-09-03
    Description:    Soil carbon stocks and sequestration have been given a lot of attention recently in the study of terrestrial ecosystems and global climate change. This review focuses on the progress made on the estimation of the soil carbon stocks of China, and the characterization of carbon dynamics of croplands with regard to climate change, and addresses issues on the mineralization of soil organic carbon in relation to greenhouse gas emissions. By integrating existing research data, China’s total soil organic carbon (SOC) stock is estimated to be 90 Pg and its inorganic carbon (SIC) stock as 60 Pg, with SOC sequestration rates in the range of 20–25 Tg/a for the last two decades. An estimation of the biophysical potential of SOC sequestration has been generally agreed as being 2 Pg over the long term, of which only 1/3 could be attainable using contemporary agricultural technologies in all of China’s croplands. Thus, it is critical to enhance SOC sequestration and mitigate climate change to improve agricultural and land use management in China. There have been many instances where SOC accumulation may not induce an increased amount of decomposition under a warming scenario but instead favor improved cropland productivity and ecosystem functioning. Furthermore, unchanged or even decreased net global warming potential (GWP) from croplands with enhanced SOC has been reported by a number of case studies using life cycle analysis. Future studies on soil carbon stocks and the sequestration potential of China are expected to focus on: (1) Carbon stocks and the sequestration capacity of the earths’ surface systems at scales ranging from the plot to the watershed and (2) multiple interface processes and the synergies between carbon sequestration and ecosystem productivity and ecosystem functioning at scales from the molecular level to agro-ecosystems. Soil carbon science in China faces new challenges and opportunities to undertake integrated research applicable to many areas. Content Type Journal Article Category Review Pages 1-11 DOI 10.1007/s11434-011-4693-7 Authors JuFeng Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Kun Cheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China GenXing Pan, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Pete Smith, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU UK LianQing Li, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XuHui Zhang, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China JinWei Zheng, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China XiaoJun Han, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China YanLing Du, Institute for Resource, Ecosystem and Environment of Agriculture, and Research Center of Agriculture and Climate Change, Nanjing Agricultural University, Nanjing, 210095 China Journal Chinese Science Bulletin Online ISSN 1861-9541 Print ISSN 1001-6538
    Print ISSN: 1001-6538
    Electronic ISSN: 1861-9541
    Topics: Natural Sciences in General
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-07-07
    Description: Tropical forests are biologically diverse ecosystems that play important roles in the carbon cycle and maintenance of global biodiversity. Understanding how tropical forests respond to environmental changes is important, as changes in carbon storage can modulate the rate and magnitude of climate change. Applying an ecoinformatics approach for managing long-term forest inventory plot data, where individual trees are tracked over time, facilitates regional and cross-continental forest research to evaluate changes in taxonomic composition, growth, recruitment and mortality rates, and carbon and biomass stocks. We developed ForestPlots.net as a secure, online inventory data repository and to facilitate data management of long-term tropical forest plots to promote scientific collaborations among independent researchers. The key novel features of the database are: (a) a design that efficiently deals with time-series data; (b) data management tools to assess potential errors; and (c) a query library to generate outputs (e.g. biomass and carbon stock changes over time).
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...