GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Publication Date: 2016-10-04
    Description: Questions The study of naturally discontinuous forest systems could help further our understanding of the relative roles of abiotic factors and spatial connectivity in influencing species turnover and plant metacommunity structure compared to continuous forest formations where local communities are often arbitrarily defined and where ‘mass effects’ and source-sink dynamics tend to confound the roles of dispersal and environment. Here we study a tropical montane landscape where old-growth evergreen forest occurs as patchy formations in a matrix of natural grasslands, to test the influence of environment and connectivity on species turnover and woody plant metacommunity structure . Location The study area consists of the western and southern regions of the Upper Nilgiri Plateau in the Western Ghats of Southern India, a global biodiversity hotspot . Methods We sampled 85 vegetation plots located across a 600 km2 landscape, assembled environmental data, constructed contrasting spatial connectivity models, including models for the effects of topography on structural connectivity, and used RDA-based variation partitioning to assess the relative influence of environment and space on woody plant metacommunity structure . Results Considering several environmental and multi-scale spatial predictors, we could explain half the variation in plant community structure. Environmental and habitat factors such as precipitation, temperature seasonality, elevation, fragment size and landscape context play a dominant role and explain 42% of variation. Spatial predictors based on Euclidean distance performed better than those that accounted for topographical resistance. Spatial predictors accounted for only 9% of the variation in plant metacommunity structure . Conclusion Our results support the species sorting paradigm of metacommunity structure, as abiotic effects and biotic interactions play dominant roles in influencing community structure and species turnover in these old growth forests with a comparatively small influence of spatial connectivity. Effective management of woody species diversity would therefore require conservation of these forests across the range of environmental conditions under which they occur . This article is protected by copyright. All rights reserved.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-03-27
    Description: Questions As biodiversity losses increase due to global change and human-induced habitat destruction, the relationships between plant traits and ecosystem properties can provide a new level of understanding ecosystem complexity. Using a functional response–effect approach, we show that multiple components of the carbon cycle are determined by a few plant traits, which in turn are strongly affected by environmental conditions. Location Salt marshes, northwest Germany. Methods We explored responses of morphological, chemical and biomass-related plant traits to environmental drivers and examined their effects on carbon cycle properties, i.e. above-ground biomass, above-ground net primary productivity and decomposition. The combined analysis between environmental parameters, functional traits and ecosystem properties used structural equation modelling (SEM). Results Important response and effect traits were leaf dry matter content (LDMC) and below-ground dry mass (BDM, responding to groundwater level and salinity) and leaf C:N ratio (responding to inundation frequency). Inundation and salinity led to increased allocation to below-ground biomass and salt stress adaptation in leaves, which translated into increased decomposition rates. Release from these abiotic controls resulted in standing biomass accumulation, which was controlled by LDMC and canopy height as key traits. Conclusions These findings demonstrate the interacting effects of non-consumable environmental factors and soil resources on morphological, chemical and biomass traits, which affected carbon cycle properties. Loss of species from the community has the potential to change the relationships between environment and vegetation-based ecosystem properties and therefore elicit effects on the multifunctionality of the entire and adjacent ecosystems. Studying relationships between plant traits and ecosystem properties can provide new insight into ecosystem complexity. We ask how plant species traits respond to environmental conditions and how key effect traits determine carbon related ecosystem properties in salt marshes of NW-Germany. Our study reveals interacting effects of environmental factors on morphological, chemical and biomass traits and gives recommendations for conservation management.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2012-11-09
    Description:    A method for obtaining a relative deer population density index with low cost and effort is urgently needed in wildlife protection areas that need their own deer management guidelines. We recorded the number of deer sighted during our daily trips on forest roads by car in Ashiu Forest at Kyoto University, Japan, beginning in 2006. We used generalized additive mixed models (GAMMs) to estimate among-year trends in the number of deer sighted. We applied models for the total number of deer (TND), number of adults (NA), and number of fawns (NF) sighted, which included both current-year and 1-year-old fawns. Full models included the terms of year (2007, 2008, 2009, and 2010), weather (fine, cloudy, and rain/snow), and nonlinear effects of season (date) and time (time). The optimal GAMMs for TND, NA, and NF did not include the effect of weather but included those of time, date, and year. The detected among-year trends in deer population may be influenced by differences in snow environments among the years. The modeling of road count data using GAMM quantitatively determined among-year variation in the number of deer sighted. This trend was similar to that of the population density estimated using a block count survey conducted in Ashiu Forest. Content Type Journal Article Category Original Article Pages 1-7 DOI 10.1007/s10310-012-0379-5 Authors Inoue Mizuki, Laboratory of Forest Science, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195 Japan Shota Sakaguchi, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Keitaro Fukushima, Field Science Education and Research Center, Kyoto University, Kyoto, Japan Masaru Sakai, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan Atsushi Takayanagi, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Daisuke Fujiki, Institute of Natural and Environment Science, University of Hyogo, Tanba, Japan Michimasa Yamasaki, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Journal Journal of Forest Research Online ISSN 1610-7403 Print ISSN 1341-6979
    Print ISSN: 1341-6979
    Electronic ISSN: 1610-7403
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2013-08-22
    Description: Wigand, L. A., Klinger, T., and Logsdon, M. G. 2013. Patterns in groundfish abundance along the Eastern Bering Sea outer continental margin. – ICES Journal of Marine Science, 70: 1181–1197. Place-based management approaches require understanding the spatial arrangement and interaction of elements. To address this need, we explored the utility of spatial-pattern analysis to understand the distribution of groundfish in the Eastern Bering Sea outer continental margin. We divided this region into discrete geomorphological units to explore spatial pattern on a range of scales. We used groundfish catch per unit effort (cpue) trawl survey data collected in four years to quantify spatial autocorrelation. Global statistics indicated that groundfish cpue was dominated by clusters of low values in all years. Local statistics showed that clusters of low values in groundfish cpue were confined to the southern portion of the study area, while clusters of high values varied across the study area. Outliers were most commonly found in close proximity to the shelf–slope break. Our results reveal the existence of spatial dependency in groundfish abundance and demonstrate that spatial analysis can be used to better understand spatial arrangements of these and other living marine resources, and to quantify and validate the local ecological knowledge of resource users. Our results indicate the feasibility of using spatially explicit tools to improve integration and visualization of marine environmental data for purposes of management and conservation.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...