GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • ddc:600  (11)
  • ddc:380  (2)
  • Ecology--Simulation methods.  (1)
  • ASFA_2015::A::Abiotic factors
  • The Netherlands
  • evolution
  • forest
  • English  (14)
  • 2015-2019  (14)
  • 2005-2009
  • 2000-2004
  • 2015  (14)
Document type
Keywords
Language
Years
  • 2015-2019  (14)
  • 2005-2009
  • 2000-2004
Year
  • 1
    Keywords: Ecology--Simulation methods. ; Ecosystem management--Simulation methods. ; Environmental sciences--Simulation methods. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (381 pages)
    Edition: 1st ed.
    ISBN: 9780444635433
    Series Statement: Issn Series ; v.Volume 27
    DDC: 577.0113
    Language: English
    Note: Front Cover -- Advanced Modelling Techniques Studying Global Changes in Environmental Sciences -- Copyright -- Contents -- Contributors -- Preface -- Chapter 1: Introduction: Global changes and sustainable ecosystem management -- 1.1. Effects of Global Changes -- 1.2. Sustainable Ecosystem Management -- 1.3. Outline of This Book -- 1.3.1. Review of ecological models -- 1.3.2. Ecological network analysis and structurally dynamic models -- 1.3.3. Behavioral monitoring and species distribution models -- 1.3.4. Ecological risk assessment -- 1.3.5. Agriculture and forest ecosystems -- 1.3.6. Urban ecosystems -- 1.3.7. Estuary and marine ecosystems -- References -- Chapter 2: Toward a new generation of ecological modelling techniques: Review and bibliometrics -- 2.1. Introduction -- 2.2. Historical Development of Ecological Modelling -- 2.3. Bibliometric Analysis of Modelling Approaches -- 2.3.1. Data Sources and Analysis -- 2.3.2. Publication Output -- 2.3.3. Journal Distribution -- 2.3.4. Country/Territory Distribution and International Collaboration -- 2.3.5. Keyword Analysis -- 2.4. Brief Review of Modelling Techniques -- 2.4.1. Structurally Dynamic Model -- 2.4.2. Individual-Based Models -- 2.4.3. Support Vector Machine -- 2.4.4. Artificial Neural Networks -- 2.4.5. Tree-Based Model -- 2.4.6. Evolutionary Computation -- 2.4.7. Ordination and Classification Models -- 2.4.8. k-Nearest Neighbors -- 2.5. Future Perspectives of Ecological Modelling -- 2.5.1. Big Data Age: Data-Intensive Modelling -- 2.5.2. Hybrid Models -- 2.5.3. Model Sensitivities and Uncertainties -- References -- Chapter 3: System-wide measures in ecological network analysis -- 3.1. Introduction -- 3.2. Description of system-wide Measures -- 3.3. Ecosystem Models Used for Comparison -- 3.4. Methods -- 3.5. Observations and Discussion -- 3.5.1. Clusters of Structure-Based Measures. , 3.5.2. Clusters of Flow-Based Measures -- 3.5.3. Clusters of Storage-Based Measures -- References -- Chapter 4: Application of structurally dynamic models (SDMs) to determine impacts of climate changes -- 4.1. Introduction -- 4.2. Development of SDM -- 4.2.1. The Number of Feedbacks and Regulations Is Extremely High and Makes It Possible for the Living Organisms and Populatio -- 4.2.2. Ecosystems Show a High Degree of Heterogeneity in Space and in Time -- 4.2.3. Ecosystems and Their Biological Components, the Species, Evolve Steadily and over the Long-Term Toward Higher Complexi -- 4.3. Application of SDMs for the Assessment of Ecological Changes due to Climate Changes -- 4.4. Conclusions -- References -- Chapter 5: Modelling animal behavior to monitor effects of stressors -- 5.1. Introduction -- 5.2. Behavior Modelling: Dealing with Instantaneous or Whole Data Sets -- 5.2.1. Parameter Extraction and State Identification -- 5.2.2. Filtering and Intermittency -- 5.2.3. Statistics and Informatics -- 5.3. Higher Moments in Position Distribution -- 5.4. Identifying Behavioral States -- 5.5. Data Transformation and Filtering by Integration -- 5.6. Intermittency -- 5.7. Discussion and Conclusion -- Acknowledgment -- References -- Chapter 6: Species distribution models for sustainable ecosystem management -- 6.1. Introduction -- 6.2. Model Development Procedure -- 6.3. Selected Models: Characteristics and Examples -- 6.3.1. Decision Trees -- 6.3.1.1. General characteristics -- 6.3.1.2. Examples -- 6.3.1.3. Additional remarks -- 6.3.2. Generalised Linear Models -- 6.3.2.1. General characteristics -- 6.3.2.2. Examples -- 6.3.2.3. Additional remarks -- 6.3.3. Artificial Neural Networks -- 6.3.3.1. General characteristics -- 6.3.3.2. Examples -- 6.3.3.3. Additional remarks -- 6.3.4. Fuzzy Logic -- 6.3.4.1. General characteristics -- 6.3.4.2. Examples. , 6.3.4.3. Additional remarks -- 6.3.5. Bayesian Belief Networks -- 6.3.5.1. General characteristics -- 6.3.5.2. Examples -- 6.3.5.3. Additional remarks -- 6.3.6. Summary of Advantages and Drawbacks -- 6.4. Future Perspectives -- References -- Chapter 7: Ecosystem risk assessment modelling method for emerging pollutants -- 7.1. Review of Ecological Risk Assessment Model Methods -- 7.2. The Selected Model Method -- 7.3. Case Study: Application of AQUATOX Models for Ecosystem Risk Assessment of Polycyclic Aromatic Hydrocarbons in Lake Ecos -- 7.3.1. Application of Models -- 7.3.2. Models -- 7.3.2.1. AQUATOX model -- 7.3.2.2. Parameterization -- 7.3.2.2.1. Biomass and physiological parameters of organisms -- 7.3.2.2.2. Characteristics of Baiyangdian Lake -- 7.3.2.2.3. PAHs model parameters -- 7.3.2.2.4. Determining PAHs water contamination -- 7.3.2.2.5. Sensitivity analysis -- 7.3.3. Results of Model Application -- 7.3.3.1. Model calibration -- 7.3.3.2. Sensitivity analysis -- 7.3.3.3. PAHs risk estimation -- 7.3.4. Discussion on the Model Application -- 7.3.4.1. Compare experiment-derived NOEC with model NOEC for PAHs -- 7.3.4.2. Compare traditional method with model method for ecological risk assessment for PAHs -- 7.4. Perspectives -- Acknowledgments -- References -- Chapter 8: Development of species sensitivity distribution (SSD) models for setting up the management priority with water qua -- 8.1. Introduction -- 8.2. Methods -- 8.2.1. BMC Platform Development for SSD Models -- 8.2.1.1. BMC structure -- 8.2.1.2. BMC functions -- 8.2.1.2.1. Fitting SSD models -- 8.2.1.2.2. Determining the best fitting model based on DIC -- 8.2.1.2.3. Uncertainty analysis -- 8.2.1.2.4. Calculating the eco-risk indicator: PAF and msPAF -- 8.2.2. Framework for Determination of WQC and Screening of PCCs -- 8.2.2.1. WQCs calculation -- 8.2.2.2. PCCs screening. , 8.2.3. Overview of BTB Areas, Occurrence of PTSs, and Ecotoxicity Data Preprocessing -- 8.3. Results and Discussion -- 8.3.1. Evaluation of the BMC Platform -- 8.3.1.1. Selection of the best SSD models -- 8.3.1.2. Priority and posterior distribution of SSDs parameters -- 8.3.1.3. CI for uncertainty analysis -- 8.3.1.4. Validation of SSD models -- 8.3.2. Eco-risks with Uncertainty -- 8.3.2.1. Generic eco-risks for a specific substance -- 8.3.2.2. Joint eco-risk for multiple substances based on response addition -- 8.3.3. Evaluation of Various WQC Strategies -- 8.3.3.1. Abundance of toxicity data -- 8.3.3.2. Limitation of toxicity data -- 8.3.3.3. Lack of toxicity data -- 8.3.3.4. Implication for improvement of the local WQC in BTB -- 8.3.4. Ranking and Screening Using Various PCC Strategies -- 8.3.4.1. PNEC -- 8.3.4.2. Eco-risk calculated by BMC -- 8.3.4.3. EEC/PNEC -- 8.3.4.4. PCC list in BTB area -- 8.3.4.5. Implication for update of the local PCC list in BTB -- 8.4. Conclusion -- Acknowledgments -- References -- Chapter 9: Modelling mixed forest stands: Methodological challenges and approaches -- 9.1. Introduction -- 9.2. Review Methodology -- 9.2.1. Literature Review on Modelling Mixed Forest Stands -- 9.2.2. Ranking of Forest Models -- 9.3. Results and Discussion -- 9.3.1. Patterns of Ecological Model Use in Mixed Forests -- 9.3.2. Model Ranking -- 9.3.2.1. FORMIX -- 9.3.2.2. FORMIND -- 9.3.2.3. SILVA -- 9.3.2.4. FORECAST -- 9.3.3. Comparison of the Top-Ranked Models -- 9.4. Conclusions -- Acknowledgments -- References -- Chapter 10: Decision in agroecosystems advanced modelling techniques studying global changes in environmental sciences -- 10.1. Introduction -- 10.2. Approaches Based on Management Strategy Simulation -- 10.2.1. Simulation of Discrete Events in Agroecosystem Dynamics -- 10.2.2. Simulation of Agroecosystem Control. , 10.3. Design of Agroecosystem Management Strategy -- 10.3.1. Hierarchical Planning -- 10.3.1.1. HTN planning concepts -- 10.3.1.2. Planning approach in HTNs -- 10.3.1.3. Illustration based on the problem of selecting an operating mode in agriculture -- 10.3.2. Planning as Weighted Constraint Satisfaction -- 10.3.2.1. Constraint satisfaction problem -- 10.3.2.2. Networks of weighted constraints -- 10.3.2.3. Illustration based on crop allocation -- 10.3.3. Planning Under Uncertainty with Markov Decision Processes -- 10.3.3.1. Markov decision processes -- 10.3.3.2. Illustration using a forest management problem -- 10.4. Strategy Design by Simulation and Learning -- 10.5. Illustrations -- 10.5.1. SAFIHR: Modelling a Farming Agent -- 10.5.1.1. Decision problem -- 10.5.1.2. SAFIHR: Continuous planning -- 10.5.1.3. Overview of the overall operation -- 10.6. Conclusion -- References -- Chapter 11: Ecosystem services in relation to carbon cycle of Asansol-Durgapur urban system, India -- 11.1. Introduction -- 11.2. Methods -- 11.2.1. Study Area -- 11.2.2. Urban Forest -- 11.2.3. Agriculture -- 11.2.4. Anthropogenic Activities -- 11.2.5. Cattle Production -- 11.3. Analysis and Discussion -- 11.3.1. Ecosystem Services and Disservices of Urban Forest -- 11.3.2. Ecosystem Services and Disservices of Agricultural Field -- 11.3.3. Ecosystem Services and Disservices Through Anthropogenic Activities -- 11.3.4. Ecosystem Services and Disservices Through Cattle Production -- 11.3.5. Impact on Biodiversity -- 11.3.6. Cultural Services and Disservices -- 11.3.7. Future Perspective of Ecosystem Services -- 11.4. Conclusions -- Acknowledgments -- References -- Chapter 12: Modelling the effects of climate change in estuarine ecosystems with coupled hydrodynamic and biogeochemical mode -- 12.1. Introduction -- 12.2. Coupled Hydrodynamic and Biogeochemical Models. , 12.3. Models as Effective Tools to Support Estuarine Climate Change Impacts Assessment.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-02-18
    Description: The field of nutrition will face numerous challenges in coming decades; these arise from changing lifestyles and global consumption patterns accompanied by a high use of resources. Against this background, this paper presents a newly designed tool to decrease the effect on nutrition, the so-called Nutritional Footprint. The tool is based on implementing the concept of a sustainable diet in decision-making processes, and supporting a resource-light society. The concept integrates four indicators in each of the two nutrition-related fields of health and environment, and condenses them into an easily communicable result, which limits its results to one effect level. Applied to eight lunch meals, the methodology and its calculations procedures are presented in detail. The results underline the general scientific view of food products; animal-protein based meals are more relevant considering their health and environmental effects. The concept seems useful for consumers to evaluate their own choices, and companies to expand their internal data, their benchmarking processes, or their external communication performance. Methodological shortcomings and the interpretation of results are discussed, and the conclusion shows the tools' potential for shaping transition processes, and for the reduction of natural resource use by supporting food suppliers' and consumers' decisions and choice.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-11-10
    Description: The innovative software system "myEcoCost" enables to gather and communicate resource and environmental data for products and services in global value chains. The system has been developed in the consortium of the European research project myEcoCost and forms a basis of a new, highly automated environmental accounting system für companies and consumers. The prototype of the system, linked to financial accounting of companies, was developed and tested in close collaboration with large and small companies. This brochure gives a brief introduction to the vision linked to myEcoCost: a network formed by collaborative environmental accounting nodes collecting environmental data at each step in a product's value chains. It shows why better life cycle data are needed and how myEcoCost addresses and solves this problem. Furthermore, it presents options for a future upscaling of highly automated environmenal accounting for prodcuts and services.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-02-18
    Description: The paper reflects the hypothesis that those technological and institutional innovations survive which extend the safe operating range (SOR) of the Humans-Technologies-Institutions (HTI) system (e.g. companies, cities, regions and countries). The multidimensional SOR of a country comprises in particular safe livelihood, quality of life, security, monetary stability, supply security and quality of the environment. A "mechanism of progress" is described involving the search for higher safety and independence of constraints. With innovation and learning in a key role, the mechanism leads to a relative decoupling of resource use and economic value added and a growing share of knowledge generation in the economy. Competition of HTI systems for scarce resources may lead to independence strategies such as enhanced resource efficiency. It may also lead to cooperation of competing HTI systems facilitated by new institutions thus forming an HTI system at higher level of complexity. While the consortium could coordinate their resource consumption within the boundaries of safe operating space, the partner HTI systems would further expand their SOR. Data is provided that net resource importing countries have developed higher material productivity thus increasing their independence from resource supply, and countries with such capability have gained higher innovation capacity.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-02-18
    Description: The bioeconomy is gaining growing attention as a perceived win-win strategy for environment and economy in the EU. However, the EU already has a disproportionately high global cropland footprint compared to the world average, and uses more cropland than domestically available to supply its demand for agricultural products. There is a risk that uncontrolled growth of the bioeconomy will increase land use pressures abroad. For that reason, a monitoring system is needed to account for the global land use of European consumption. The aim of this paper is to take a closer look at the tools needed to monitor global cropland footprints, as well as the targets needed to benchmark development. This paper reviews recent developments in land footprint accounting approaches and applies the method of global land use accounting to calculate the global cropland footprint of the EU-27 for the years between 2000 and 2011. It finds a slight decrease in per capita cropland footprints over the past decade (of around 1% annually, reaching 0.29 ha/cap in 2011) and advocates promoting a further decrease in per capita cropland requirements (of around 2% annually) to reach global land use targets for keeping consumption within the safe operating space of planetary boundaries by 2030. It argues that strategic land reduction targets may still go hand in hand with the growth of a smart, innovative and sustainable bioeconomy by reinforcing the need for policies that support greater efficiency across the life-cycle and reduce wasteful and excessive consumption practices. Recommendations for further improving land footprint accounting are given.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2022-02-18
    Description: Objective: The aim of the present article is to conduct an integrated assessment in order to explore whether CCS could be a viable technological option for significantly reducing future CO2 emissions in China. Methods: In this paper, an integrated approach covering five assessment dimensions is chosen. Each dimension is investigated using specific methods (graphical abstract). Results: The most crucial precondition that must be met is a reliable storage capacity assessment based on site-specific geological data. Our projection of different trends of coal-based power plant capacities up to 2050 ranges between 34 and 221 Gt of CO2 that may be captured from coal-fired power plants to be built by 2050. If very optimistic assumptions about the country’s CO2 storage potential are applied, 192 Gt of CO2 could theoretically be stored as a result of matching these sources with suitable sinks. If a cautious approach is taken, this figure falls to 29 Gt of CO2. In practice, this potential will decrease further with the impact of technical, legal, economic and social acceptance factors. Further constraints may be the delayed commercial availability of CCS in China; a significant barrier to achieving the economic viability of CCS due to a currently non-existing nation-wide CO2 pricing scheme that generates a sufficiently strong price signal; an expected life-cycle reduction rate of the power plant's greenhouse gas emissions of 59-60%; and an increase in most other negative environmental and social impacts. Conclusion and practice implications: Most experts expect a striking dominance of coal-fired power generation in the country's electricity sector, even if the recent trend towards a flattened deployment of coal capacity and reduced annual growth rates of coal-fired generation proves to be true in the future. In order to reduce fossil fuel-related CO2 emissions to a level that would be consistent with the long-term climate protection target of the international community to which China is increasingly committing itself, this option may require the introduction of CCS. However, a precondition for opting for CCS would be finding robust solutions to the constraints highlighted in this article. Furthermore, a comparison with other low-carbon technology options may be useful in drawing completely valid conclusions on the economic, ecological and social viability of CCS in a low-carbon policy environment. The assessment dimensions should be integrated into macro-economic optimisation models by combining qualitative with quantitative modelling, and the flexible operation of CCS power plants should be analysed in view of a possible role of CCS for balancing fluctuating renewable energies.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-02-18
    Description: The CO2 utilisation is discussed as one of the future low-carbon technologies in order to accomplish a full decarbonisation in the energy intensive industry. CO2 is separated from the flue gas stream of power plants or industrial plants and is prepared for further processing as raw material. CO2 containing gas streams from industrial processes exhibit a higher concentration of CO2 than flue gases from power plants; consequentially, industrial CO2 sources are used as raw material for the chemical industry and for the synthesis of fuel on the output side. Additionally, fossil resources can be replaced by substitutes of reused CO2 on the input side. If set up in a right way, this step into a CO2-based circular flow economy could make a contribution to the decarbonisation of the industrial sector and according to the adjusted potential, even rudimentarily to the energy sector. In this study, the authors analyse potential CO2 sources, the potential demand and the range of applications of CO2. In the last chapter of the final report, they give recommendations for research, development, politics and economics for an appropriate future designing of CO2 utilisation options based upon their previous analysis.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-11-23
    Description: Considerable efficiency gains can be made costeffectively to set the transport sector on a sustainable development pathway. They can be achieved through already available technologies and practices, which will not only reduce greenhouse gas emissions significantly, but also generate social, environmental and economic co-benefits. However, progress in the take-up of low-carbon mobility measures substantially lags behind the potential. A number of barriers contribute to this lack of uptake. This paper explores those barriers by focusing on vehicle fuel efficiency in particular, but will also touch on the wider policy framework to improve the efficiency of the transport sector and reduce emissions. The paper suggests that a combination of fuel pricing, differentiated vehicle taxation, vehicle standards and the provision of modal choice are necessary to minimise rebound effects and significantly curb transport sector greenhouse gas emissions at low- or even negative cost.
    Keywords: ddc:380
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-02-18
    Description: The climate impact of the iron and steel industry can be mitigated through increased energy efficiency, emission efficiency, material efficiency, and product use efficiency resulting in reduced product demand. For achieving ambitious greenhouse gas (GHG) mitigation targets in this sector all measures could become necessary. The current paper focuses on one of those four key measures: emission efficiency via innovative primary steelmaking technologies. After analysing their techno-economical potential until 2100 in part A of this publication, the current research broadens the evaluation scope for the crucial year 2050, based on a Multicriteria-Analysis (MCA). 12 criteria from five different categories ("technology", "society and politics", "economy", "safety and vulnerability" and "ecology") are used to assess the same four future steelmaking technologies in a systematic and holistic way in Germany, as one possible location. The technologies in focus are the blast furnace route (BF-BOF), blast furnace with carbon capture and storage (BF-CCS), hydrogen direct reduction (H-DR), and iron ore electrolysis (EW). These four technologies have been selected, as explained in part A of this paper, because they are the most commonly discussed technological options under discussion by policymakers and the iron and steel industry. The results of the current work should provide decision makers in industry and government with a long-term guidance on technological choices. In 2050 the MCA shows significantly higher preference scores for the two innovative routes H-DR and EW compared to the blast furnace based routes. The main reasons being higher scores in the economical and environmental criteria. BF-CCS shows its greatest weakness in the social acceptance and the safety and vulnerability criteria. BF-BOF has the lowest economy and ecology score of all assessed routes, which is due to the projected high cost for carbon dioxide emission and increasing prices for fossil fuels. A first indicative trend assessment from today towards 2050 shows that H-DR is the preferred MCA option from today on. Three exemplary weighting distributions (representing the perspectives of the steel industry, environmental organisations and the government), used to simulate different stakeholder angle of view, don't have a strong influence on the overall evaluation of the steelmaking routes. The results remain very similar, with the highest scores for the innovative routes (H-DR and EW). This leads to the conclusion that EW and in particular H-DR can be identified as the preferred future steelmaking technology across different perspectives. Specific innovation efforts and dedicated programs are necessary to minimize the time until marketability and to share the development burden. The similarity of the MCA results from different perspectives indicates a great opportunity to reach a political consensus and to work together towards a common future goal. Regarding the pressing time horizon a concentrated engagement for one (or few) technological choices would be highly recommended.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-02-18
    Description: The current momentum in the electrification of the car fuels hope for a transition in mobility. However, electric vehicles have failed before and it is thus asked: What is the potential of e-mobility developing as a sustainable system innovation? In order to deal with this challenge analytically, a theoretical framework is developed: the concepts of transformative capacity of a new technology (do electric vehicles trigger "social" innovations, e.g. new business models or use patterns?) and system adaptability (how stable is the mobility regime?) are introduced and the issue of sustainability is discussed. This framework will be explored for the German innovation system for e-mobility. It can be shown that electric cars will only be successful when part of a system innovation and that the German innovation system is dominated by regime actors and thus potentially used as a way to fend off more substantial change.
    Keywords: ddc:380
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: article , doc-type:article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...