GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (4)
  • Journals
  • Data
  • 363.7  (1)
  • 363.738  (1)
  • 363.738/74  (1)
  • 560  (1)
  • 1
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Climatic changes-Economic aspects. ; Global warming-Economic aspects. ; Greenhouse gas mitigation-Economic aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (583 pages)
    Edition: 1st ed.
    ISBN: 9781351161596
    DDC: 363.738/74
    Language: English
    Note: Cover -- Half Title -- Series Title -- Title -- Copyright -- Contents -- Acknowledgements -- Series Preface -- Introduction -- PART I CLIMATE CHANGE AND ITS IMPACTS -- 1 John Houghton (2001), 'The Science of Global Warming', Interdisciplinary Science Reviews, 26, pp. 247-57. -- 2 Brent Sohngen and Robert Mendelsohn (1998), 'Valuing the Impact of Large-Scale Ecological Change in a Market: The Effect of Climate Change on U.S. Timber', American Economic Review, 88, pp. 686-710. -- 3 Kenneth D. Frederick and David C. Major (1997), 'Climate Change and Water Resources', Climatic Change, 37, pp. 7-23. -- 4 Gary Yohe and Michael Schlesinger (2002), 'The Economic Geography of the Impacts of Climate Change', Journal of Economic Geography, 2, pp. 311-41. -- 5 Allan D. Brunner (2002), 'El Nino and World Primary Commodity Prices: Warm Water or Hot Air?', Review of Economics and Statistics, 84, pp. 176-83. -- 6 Robert Mendelsohn, William D. Nordhaus and Daigee Shaw (1994), 'The Impact of Global Warming on Agriculture: A Ricardian Analysis', American Economic Review, 84, pp. 753-71. -- 7 John Quiggin and John K. Horowitz (1999), 'The Impact of Global Warming on Agriculture: A Ricardian Analysis: Comment', American Economic Review, 89, pp. 1044-45. -- 8 Robert Mendelsohn and William Nordhaus (1999), 'The Impact of Global Warming on Agriculture: A Ricardian Analysis: Reply', American Economic Review, 89, pp. 1046-48. -- 9 Roy Darwin (1999), 'The Impact of Global Warming on Agriculture: A Ricardian Analysis: Comment', American Economic Review, 89, pp. 1049-52. -- 10 Robert Mendelsohn and William Nordhaus (1999), 'The Impact of Global Warming on Agriculture: A Ricardian Analysis: Reply', American Economic Review, 89, pp. 1053-55. -- PART II EVALUATING THE COSTS AND BENEFITS OF CLIMATE CHANGE MITIGATION. , 11 William D. Nordhaus (1993), 'Rolling the "DICE": An Optimal Transition Path for Controlling Greenhouse Gases', Resource and Energy Economics, 15, pp. 27-50. -- 12 Richard S.J. Tol (1999), 'The Marginal Costs of Greenhouse Gas Emissions', Energy Journal, 20, pp. 61-81. -- 13 Tim Roughgarden and Stephen H. Schneider (1999), 'Climate Change Policy: Quantifying Uncertainties for Damages and Optimal Carbon Taxes', Energy Policy, 27, pp. 415-29. -- 14 Lawrence H. Goulder and Koshy Mathai (2000), 'Optimal C02 Abatement in the Presence of Induced Technological Change', Journal of Environmental Economics and Management, 39, pp. 1-38. -- 15 Charles D. Kolstad (1996), 'Learning and Stock Effects in Environmental Regulation: The Case of Greenhouse Gas Emissions', Journal of Environmental Economics and Management, 31, pp. 1-18. -- 16 Christian Azar and Thomas Sterner (1996), 'Discounting and Distributional Considerations in the Context of Global Warming', Ecological Economics, 19, pp. 169-84. -- 17 Richard B. Howarth (2000), 'Climate Change and the Representative Agent', Environmental and Resource Economics, 15, pp. 135-48. -- 18 Thomas C. Schelling (1995), 'Intergenerational Discounting', Energy Policy, 23, pp. 395-401. -- 19 T.M.L. Wigley, R. Richels and J.A. Edmonds (1996), 'Economic and Environmental Choices in the Stabilization of Atmospheric C02 Concentrations', Nature, 379, pp. 240-43. -- 20 Zhongxiang Zhang (2000), 'Decoupling China's Carbon Emissions Increase from Economic Growth: An Economic Analysis and Policy Implications', World Development, 28, pp. 739-52. -- 21 Robert C. Hyman, John M. Reilly, Mustafa H. Babiker, Ardoin De Masin and Henry D. Jacoby (2003), 'Modeling N on-C02 Greenhouse Gas Abatement', Environmental Modeling and Assessment, 8, pp. 175-86. , 22 Richard G. Newell and Robert N. Stavins (2000), 'Climate Change and Forest Sinks: Factors Affecting the Costs of Carbon Sequestration', Journal of Environmental Economics and Management, 40, pp. 211-35. -- 23 Andrew J. Plantinga, Thomas Mauldin and Douglas J. Miller (1999), 'An Econometric Analysis of the Costs of Sequestering Carbon in Forests', American Journal of Agricultural Economics', 81, pp. 812-24. -- PART III POLICY DESIGN FOR GHG MITIGATION -- 24 Ian W.H. Parry and Roberton C. Williams III (1999), 'A Second-Best Evaluation of Eight Policy Instruments to Reduce Carbon Emissions', Resource and Energy Economics, 21, pp. 347-73. -- 25 William A. Pizer (2002), 'Combining Price and Quantity Controls to Mitigate Global Climate Change', Journal of Public Economics, 85, pp. 409-34. -- 26 Michael Grubb (1997), 'Technologies, Energy Systems and the Timing of C02 Emissions Abatement: An Overview of Economic Issues', Energy Policy, 25, pp. 159-72. -- 27 Adam B. Jaffe and Robert N. Stavins (1994), 'Energy-Efficiency Investments and Public Policy', Energy Journal, 15, pp. 43-65. -- 28 P.R. Shukla (1996), 'The Modelling of Policy Options for Greenhouse Gas Mitigation in India', Ambio, 25, pp. 240-48. -- 29 Scott Barrett (1998), 'Political Economy of the Kyoto Protocol', Oxford Review of Economic Policy, 14, pp. 20-39. -- 30 Adam Rose, Brandt Stevens, Jae Edmonds and Marshall Wise (1998),' International Equity and Differentiation in Global Warming Policy: An Application to Tradeable Emission Permits', Environmental and Resource Economics, 12, pp. 25-51. -- 31 Zili Yang (1999), 'Should the North Make Unilateral Technology Transfers to the South? North-South Cooperation and Conflicts in Responses to Global Climate Change', Resource and Energy Economics, 21, pp. 67-87. , 32 Mustafa Babiker, John M. Reilly and Henry D. Jacoby (2000), 'The Kyoto Protocol and Developing Countries', Energy Policy, 28, pp. 525-36. -- Name Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford :Taylor & Francis Group,
    Keywords: Environmental management. ; Electronic books.
    Description / Table of Contents: Environmental Science for Environmental Management has quickly established itself as the leading introduction to environmental science, demonstrating how a more environmental science can create an effective approach to environmental management on different spatial scales. Since publication of the first edition, environmentalism has become an increasing concern on the global political agenda. Following the Rio Conference and meetings on population, social justice, women, urban settlement and oceans, civil society has increasingly promoted the cause of a more radical agenda, ranging from rights to know, fair trade, social empowerment, social justice and civil rights for the oppressed, as well as novel forms of accounting and auditing. This new edition is set in the context of a changing environmentalism and a challenged science. It builds on the popularity and applicability of the first edition and has been fully revised and updated by the existing writing team from the internationally renowned School of Environmental Science at the University of East Anglia.
    Type of Medium: Online Resource
    Pages: 1 online resource (539 pages)
    Edition: 2nd ed.
    ISBN: 9781317880349
    DDC: 363.7
    Language: English
    Note: Cover -- Half Title -- Title -- Copyright -- Dedication -- Contents -- List of contributors -- Preface -- Foreword -- Acknowledgements -- List of journals -- 1 Environmental science on the move -- 2 The sustainability debate -- 3 Environmental politics and policy processes -- 4 Environmental and ecological economics -- 5 Biodiversity and ethics -- 6 Population, adaptation and resilience -- 7 Climate change -- 8 Managing the oceans -- 9 Coastal processes and management -- 10 GIS and environmental management -- 11 Soil erosion and land degradation -- 12 River processes and management -- 13 Groundwater pollution and protection -- 14 Marine and estuarine pollution -- 15 Urban air pollution and public health -- 16 Preventing disease -- 17 Environmental risk management -- 18 Waste management -- 19 Managing the global commons -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Conservation biology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (268 pages)
    Edition: 1st ed.
    ISBN: 9783319737959
    Series Statement: Topics in Geobiology Series ; v.47
    DDC: 560
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- An Overview of Conservation Paleobiology -- 1 Defining and Establishing Conservation Paleobiologyas a Discipline -- 2 Data in Conservation Paleobiology -- 3 Looking Forward -- References -- Should Conservation Paleobiologists Save the World on Their Own Time? -- 1 Always Academicize? -- 2 To Advocate, or Not to Advocate -- 3 Speaking Honestly to Power -- 4 From Pure Scientist to Honest Broker -- 5 Keeping It Real -- 6 Overcoming the Fear Factor -- 7 Later Is Too Late -- References -- Conceptions of Long-Term Data Among Marine Conservation Biologists and What Conservation Paleobiologists Need to Know -- 1 What is "Long Term"? -- 2 Survey Implementation -- 3 Survey Responses and What They Mean for Conservation Paleobiologists -- Conservation Goals -- Long-Term Data -- Environmental Stressors -- Baselines -- Challenges -- 4 Takeaways for Conservation Paleobiologists -- 5 Moving Forward -- Appendix 1: Survey Questions -- Appendix 2: Survey Population Selection -- Appendix 3: Categorization of Responses -- References -- Effectively Connecting Conservation Paleobiological Research to Environmental Management: Examples from Greater Everglades' Restoration of Southwest Florida -- 1 Introduction -- 2 Defining the Problem -- 3 Ensuring Success as a Conservation Paleobiologist -- Developing Partnerships and Collaborative Teams -- Becoming or Engaging a Liaison -- Participate in "Management Collaboratives" -- Compose Technical Reports in Addition to Peer-Reviewed Journal Articles -- Present Your Findings to Stake Holder Groups -- Attend and Present at Environmental Science and Restoration Conferences -- Train our Students -- Reward Faculty for Conducting Community-Engaged Scholarship -- Promote and Reward Community Service for Work with Environmental Agencies and NGOs. , 4 Case Studies from Greater Everglades' Restoration -- Case Study 1: Water Management of the Caloosahatchee River -- Case Study 2: Picayune Strand Restoration Project -- 5 Conclusions -- References -- Using the Fossil Record to Establish a Baseline and Recommendations for Oyster Mitigation in the Mid-Atlantic U.S. -- 1 Introduction -- 2 Methods -- Pleistocene Localities -- Field and Museum Sampling -- Oyster Size and Abundance Data -- Reconstructing Paleotemperature and Salinity -- Modern and Colonial Data -- 3 Results -- Paleoenvironmental Reconstruction of Holland Point -- Paleotemperature -- Paleosalinity -- Shell Height -- Growth Rate -- 4 Discussion -- Comparing Pleistocene to Modern Oysters -- Environmental Controls on Oyster Size -- Human Factors Influencing Oyster Size -- Implications for Restoration -- A Role for Conservation Paleobiology -- 5 Conclusion -- References -- Coral Reefs in Crisis: The Reliability of Deep-Time Food Web Reconstructions as Analogs for the Present -- 1 Introduction -- Preserving the Past -- Endangered Coral Reefs -- 2 Fossilizing a Coral Reef -- Dietary Breadth -- Trophic Chains and Levels -- Modularity -- 3 Guild Structure and Diversity -- Identifying Guilds in a Food Web -- 4 Reconstructing the Community -- Diversity and Evenness -- Simulated Food Webs -- 5 Summary -- Appendix 1 -- Hypergeometric Variance -- Appendix 2 -- References -- Exploring the Species -Area Relationship Within a Paleontological Context, and the Implications for Modern Conservation Biology -- 1 Introduction -- 2 Geological Setting -- 3 Methods -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Marine Refugia Past, Present, and Future: Lessons from Ancient Geologic Crises for Modern Marine Ecosystem Conservation -- 1 Introduction -- 2 Defining Refugium. , A Species Must Have a Range Contraction, Range Shift, or Migration in Order to Escape the Onset of Global Environmental Degradation That Would Otherwise Cause Extinction of That Species -- Range Shifts -- Habitat Shifts -- Isolated Geographic Refugia -- Life History Refugia -- Cryptic Refugia -- Harvest Refugia -- The Environmental Conditions of a Refugium Are Sufficiently Habitable Such That the Species' Population Remains Viable During Its Time in the Refugium -- A Species' Population Is Smaller in the Refugium Than Its Pre-environmental Perturbation Size -- The Species Remains in the Refugium for Many Generations -- After the Environmental Crisis Ends, the Species Recovers by Inhabiting Newly Re-opened Habitats, Either Through Population Expansion or Through Adaptive Radiation -- Otherwise, the Refugium Became a Trap -- 3 Identifying Ancient Refugia -- Fossil Data -- Phylogeographic Studies -- Species Distribution Models -- 4 Lessons from the Past for Identifying Future Refugia -- As the Marine Environment Continues to Change, Refugia May Need to Shift -- Refugial Size and Connectivity Can Enhance Survivorship, But Can Also Have Evolutionary Consequences -- Conditions Inside Refugia May Not Necessarily Remain Pristine, But Will Need to Be of Sufficiently Lower Magnitude of Total Stress to Maintain Viable Populations -- Beware the Refugial Trap -- 5 Future Directions for Investigating Ancient Refugia -- 6 Conclusions -- Appendix -- References -- Training Tomorrow's Conservation Paleobiologists -- 1 Business As Usual Is Not Enough -- 2 A Call to Action -- 3 Bridging the Gap -- Recommendation 1 -- Recommendation 2 -- Recommendation 3 -- Recommendation 4 -- Recommendation 5 -- Recommendation 6 -- 4 Okay, But… -- 5 In the Meantime… -- 6 A Bright Future -- References -- A Conceptual Map of Conservation Paleobiology: Visualizinga Discipline. , 1 Determining the Current State and Structure of Conservation Paleobiology -- 2 Mapping a Discipline -- Bibliographic Co-Authorship Visualizations -- Text Co-Occurrence Visualizations -- Bibliographic Co-Citation Visualizations -- Bibliographic Coupling Visualizations -- 3 Bibliometric Networks -- Bibliographic Co-Authorship Networks -- Text Co-Occurrence Networks -- Bibliographic Co-Citation Networks -- Bibliometric Coupling Networks -- 4 The Intellectual Landscape -- 5 Emerging Frontiers -- 6 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Microplastics-Environmental aspects. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (531 pages)
    Edition: 1st ed.
    ISBN: 9781119879527
    DDC: 363.738
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Section I Single Use Plastics -- Chapter 1 Scientometric Analysis of Microplastics across the Globe -- 1.1 Introduction -- 1.2 Materials and Methods -- 1.3 Results and Discussion -- 1.3.1 Trends in Scientific Production and Citations -- 1.3.2 Top Funding Agencies -- 1.3.3 Top 10 Global Affiliations -- 1.3.4 Top Countries -- 1.3.5 Top 10 Databases and Journals -- 1.3.6 Top 10 Published Articles -- 1.3.7 Top 10 Author Keywords and Research Areas -- 1.4 Conclusion -- Acknowledgments -- References -- Chapter 2 Microplastic Pollution in the Polar Oceans - A Review -- 2.1 Introduction -- 2.1.1 Plastics -- 2.1.2 Plastic Pollution -- 2.1.3 Microplastics -- 2.1.4 Importance of Microplastic Pollution in the Polar Oceans -- 2.2 Polar Regions -- 2.2.1 General -- 2.2.2 Sea Ice -- 2.2.3 Water -- 2.2.4 Sediments -- 2.2.5 Biota -- 2.3 Future Perspectives -- 2.4 Conclusions -- References -- Chapter 3 Microplastics - Global Scenario -- 3.1 Introduction -- 3.2 Environmental Issues of Plastic Waste -- 3.3 Coprocessing of Plastic Waste in Cement Kilns -- 3.3.1 Cost of Plants to Convert Plastic Waste to Refused-Derived Fuel (RDF) -- 3.4 Disposal of Plastic Waste Through Plasma Pyrolysis Technology (PPT) -- 3.4.1 Merits of PPT -- 3.5 Constraints on the Use of Plastic Waste Disposal Technologies -- 3.6 Alternate to Conventional Petro-based Plastic Carry Bags and Films -- 3.7 Improving Waste Management -- 3.7.1 Phasing Out Microplastics -- 3.7.2 Promoting Research into Alternatives -- 3.7.3 Actions and Resolutions -- References -- Chapter 4 The Single-Use Plastic Pandemic in the COVID-19 Era -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Data Sources -- 4.2.2 Estimation of the General population's Daily Use of Face Masks. , 4.2.3 Estimation of the Daily Amount of Medical Waste in Hospitals -- 4.3 Trends in Production and Consumption of SUPs during the Pandemic -- 4.3.1 Personal Protective Equipment -- 4.3.2 Packaging SUPs -- 4.3.2.1 Trends in Plastic Waste Generation, Management, and Environmental Fate during the COVID-19 Era -- 4.4 SUP Waste from the Pandemic -- 4.4.1 Environmental Impacts from SUP Waste -- 4.4.2 Management of SUP Waste -- 4.5 Conclusions and Future Prospects -- References -- Section II Microplastics in the Aerosphere -- Chapter 5 Atmospheric Microplastic Transport -- 5.1 The Phenomenon of Microplastic Transport -- 5.2 Factors Affecting Microplastic Transport -- 5.2.1 Types of MPs -- 5.2.2 Characteristics and Sources of Microplastics Emitters -- 5.2.3 Meteorological Conditions -- 5.2.4 Altitude and Surface Roughness -- 5.2.5 Microplastic Deposition Processes in the Ocean -- 5.2.6 Microplastics Deposition Processes in the Air -- 5.3 Microplastic Transport Modelling -- 5.3.1 Eulerian Method -- 5.3.2 Lagrangian Method -- References -- Chapter 6 Microplastics in the Atmosphere and Their Human and Eco Risks -- 6.1 Introduction -- 6.2 Microplastics in the Atmosphere -- 6.2.1 Size, Shapes, and Colours -- 6.2.2 Chemical Composition -- 6.2.3 Sources of Microplastics -- 6.2.4 Spatial Distribution and Rate of Deposition -- 6.2.5 Effects of Climatic Conditions on MP Distribution -- 6.2.6 Transport Pathways -- 6.2.7 Pollutants Associated with MPs -- 6.3 Impact of Microplastics on Human Health and the Eco Risk -- 6.3.1 Impact on Human Health -- 6.3.2 Eco Risk -- 6.4 Strategies to Minimise Atmospheric MPs through Future Research -- 6.5 Conclusion -- Acknowledgements -- References -- Chapter 7 Sampling and Detection of Microplastics in the Atmosphere -- 7.1 Introduction -- 7.2 Classification -- 7.3 Sampling Microplastics -- 7.3.1 Sampling Airborne Microplastics. , 7.3.2 Sediment -- 7.3.3 Water -- 7.3.4 Biota -- 7.4 Sample Preparation -- 7.5 Detection and Characterisation of MPs in the Atmosphere -- 7.5.1 Microscopic Techniques for Detecting MPs -- 7.5.1.1 Stereomicroscopy -- 7.5.1.2 Fluorescence Microscopy -- 7.5.1.3 Polarised Optical Microscopy (POM) -- 7.5.1.4 Scanning Electron Microscopy (SEM) -- 7.5.1.5 Atomic Force Microscopy (AFM) -- 7.5.1.6 Hot Needle Technique -- 7.5.1.7 Digital Holography -- 7.5.2 Spectroscopic Techniques for Analysing MPs -- 7.5.2.1 Fourier Transform Infrared (FTIR) Spectroscopy -- 7.5.2.2 Raman Spectroscopy -- 7.5.3 Thermal Analysis -- 7.5.3.1 Differential Scanning Calorimetry (DSC) -- 7.5.3.2 Thermogravimetric Analysis (TGA) -- 7.5.3.3 Pyrolysis-Gas Chromatography-Mass Spectrometry (Pyr-GC-MS) -- 7.6 Conclusion -- Funding -- References -- Chapter 8 Sources and Circulation of Microplastics in the Aerosphere - Atmospheric Transport of Microplastics -- 8.1 Introduction -- 8.1.1 Occurrence and Abundance of Atmospheric MP -- 8.1.2 Plastic Polymers and Their Properties -- 8.1.3 Sources and Pathways of MPs in the Atmosphere -- 8.2 Temporal and Spatial Trends in MP Accumulation -- 8.2.1 Roadside MPs -- 8.2.2 Agricultural Fields and Soil -- 8.2.3 Wastewater and Sludge -- 8.2.4 Ocean/Marine Debris -- 8.3 Formation of MPs -- 8.3.1 Physical Weathering -- 8.3.2 Chemical Weathering -- 8.3.3 Biodegradation -- 8.3.4 Photo-thermal Oxidation -- 8.3.5 Thermal Degradation -- 8.4 Atmospheric Circulation, Transport, Suspension, and Deposition -- 8.4.1 Wet Deposition -- 8.4.2 Dry Deposition -- 8.4.3 Urban Dust -- 8.4.4 Suspended Atmospheric MPs -- 8.5 Atmospheric Chemistry of MPs -- 8.6 Predicting MP Dispersion and Transport -- 8.7 Eco-Environmental Impacts -- 8.7.1 Impacts on Human and Wildlife Health -- 8.7.2 Impacts on the Climate -- 8.8 Future Perspectives -- References. , Section III Microplastics in the Aquatic Environment -- Chapter 9 Interaction of Chemical Contaminants with Microplastics -- 9.1 Introduction -- 9.2 Interactions -- 9.3 Mechanisms -- 9.3.1 Interactions between Organic Contaminants and Microplastics -- 9.3.2 Interactions between Heavy Metals and Microplastics -- 9.3.3 Kinetics of the Sorption Process -- 9.3.4 Pseudo-First-Order Model -- 9.3.5 Pseudo-Second-Order Model -- 9.3.6 Intraparticle Diffusion Model -- 9.3.7 Film Diffusion Model -- 9.3.8 Isotherm Models -- 9.3.9 Langmuir Model -- 9.3.10 Freundlich Model -- 9.4 Environmental Burden of Microplastics -- 9.5 Future Approaches -- References -- Chapter 10 Microplastics in Freshwater Environments -- 10.1 Introduction -- 10.2 Microplastics in Rivers and Tributaries -- 10.3 Microplastics in Lakes -- 10.4 Microplastics in Groundwater Sources -- 10.5 Microplastics in Glaciers and Ice Caps -- 10.6 Microplastics in Deltas -- 10.7 Conclusion -- Acknowledgment -- References -- Chapter 11 Microplastics in Landfill Leachate: Flow and Transport -- 11.1 Plastics and Microplastics -- 11.2 Microplastics in Landfill Leachate -- 11.3 Summary -- Acknowledgments -- References -- Chapter 12 Microplastics in the Aquatic Environment - Effects on Ocean Carbon Sequestration and Sustenance of Marine Life -- 12.1 Introduction -- 12.2 Microplastics in the Aquatic Environment -- 12.2.1 Major Sources -- 12.2.2 Chemical Nature and Distribution Processes -- 12.2.2.1 Chemical Nature -- 12.2.2.2 Distribution Processes -- 12.3 Microplastics and Ocean Carbon Sequestration -- 12.3.1 Ocean Carbon Sequestration -- 12.3.2 Effect of Microplastics on Ocean Carbon Sequestration -- 12.3.2.1 Effect on Phytoplankton Photosynthesis and Growth -- 12.3.2.2 Effect on Zooplankton Development and Reproduction -- 12.3.2.3 Effect on the Marine Biological Pump -- 12.4 Microplastics and Marine Fauna. , 12.4.1 Effects on Corals -- 12.4.2 Effects on Fisheries and Aquaculture -- 12.4.2.1 Shrimp -- 12.4.2.2 Oysters and Mussels -- 12.4.2.3 Fish -- 12.4.3 Effects on Sea Turtles and Sea Birds -- 12.4.4 Effects on Marine Mammals -- 12.5 Microplastic Pollution, Climate Change, and Antibiotic Resistance - A Unique Trio -- 12.6 Conclusion and Future Perspectives -- Acknowledgments -- References -- Section IV Microplastics in Soil Systems -- Chapter 13 Entry of Microplastics into Agroecosystems: A Serious Threat to Food Security and Human Health -- 13.1 Introduction -- 13.2 Sources of Microplastics in Agroecosystems -- 13.2.1 Plastic Mulching -- 13.2.2 Plastic Use in Modern Agriculture -- 13.2.3 Application of Sewage Sludge/Biosolids -- 13.2.4 Compost and Fertilizers -- 13.2.5 Wastewater Irrigation -- 13.2.6 Landfill Sites -- 13.2.7 Atmospheric Deposition -- 13.2.8 Miscellaneous Sources -- 13.3 Implications of Microplastic Contamination on Agroecosystems -- 13.3.1 Implications for Soil Character -- 13.3.2 Implications for Crop Plants and Food Security -- 13.4 Human Health Risks -- 13.5 Knowledge Gaps -- 13.6 Conclusion and Future Recommendations -- Acknowledgments -- References -- Chapter 14 Migration of Microplastic-Bound Contaminants to Soil and Their Effects -- 14.1 Introduction -- 14.2 Microplastics as Sorbing Materials for Hazardous Chemicals -- 14.3 Types of Microplastic-Bound Contaminants in Soils -- 14.3.1 Heavy Metals and Metalloids - Inorganic Contaminants Adsorbed to MPs -- 14.3.2 Persistent Organic Pollutants, Pharmaceuticals, Antibiotics, Pesticides, and Other Organic Contaminants Adsorbed to MPs -- 14.4 Effects of Exposure and Co-exposure in Soil - Consequences of Contaminant Sorption for MP Toxicity and Bioaccumulation -- 14.5 Microplastic-Bound Contaminants in Soils as Potential Threats to Human Health -- 14.6 Conclusions -- References. , Chapter 15 Plastic Mulch-Derived Microplastics in Agricultural Soil Systems.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...