GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (3)
  • Articles
  • 333.79  (2)
  • 658.5  (1)
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Product life cycle. ; Product management. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (271 pages)
    Edition: 1st ed.
    ISBN: 9789401786973
    Series Statement: LCA Compendium - the Complete World of Life Cycle Assessment Series
    DDC: 658.5
    Language: English
    Note: Intro -- Foreword -- Acknowledgments -- Contents -- Contributors -- Chapter-1 -- Introducing Life Cycle Assessment and its Presentation in 'LCA Compendium' -- 1 What is Life Cycle Assessment? -- 2 LCA-How it Came About -- 2.1 The Early Time -- 2.2 Harmonisation by SETAC -- 2.3 Standardisation by ISO -- 2.4 Recent Trends -- 3 The Structure of LCA According to ISO 14040 and 14044 -- 3.1 Goal and Scope Definition -- 3.2 Life Cycle Inventory Analysis -- 3.3 Life Cycle Impact Assessment -- 3.4 Interpretation -- 4 The Structure of LCA Beyond ISO 14040 -- 4.1 Applications of Life Cycle Assessment -- 4.2 Beyond the Classical ISO LCA -- 4.3 Life Cycle Management -- 4.4 Life Cycle Sustainability Assessment -- 4.5 LCA Worldwide -- 5 Structure of 'LCA Compendium' -- 5.1 Background and Future Prospects in Life Cycle Assessment -- 5.2 Goal and Scope Definition in Life Cycle Assessment -- 5.3 Life Cycle Inventory Analysis -- 5.4 Life Cycle Impact Assessment -- 5.5 Interpretation -- and, Critical Review and Reporting -- 5.6 Overview on LCA Applications -- 5.7 Special types of Life Cycle Assessment -- 5.8 Life Cycle Management -- 5.9 Life Cycle Sustainability Assessment -- 5.10 LCA Worldwide -- 6 New Developments and Special Types of Life Cycle Assessment-How Are they taken into Account? -- 7 How Scientific is LCA? -- Appendix-Glossary -- References -- Chapter-2 -- The Role of the Society of Environmental Toxicology and Chemistry (SETAC) in Life Cycle Assessment (LCA) Development and Application -- 1 Introduction-SETAC and Life Cycle Assessment -- 2 Life Before SETAC's Involvement with LCA -- 2.1 Focus on Pollution Reduction -- 2.2 Moving Beyond Pollution Control to Pollution Prevention -- 2.2.1 Duelling Diaper Debates -- 2.2.2 Mercury in Fluorescent Light Bulbs -- 2.2.3 Coca-Cola's Supply Chain Improvements -- 3 The Birth of SETAC -- 3.1 SETAC Workshops. , 3.1.1 Pellston Workshops -- 3.1.2 Technical Workshops -- 4 Early Days of SETAC 1990-1993 -- 4.1 SETAC LCA Groups -- 4.2 LCA Group Activities -- 4.2.1 A Technical Framework for Life Cycle assessment. August 18-23, 1990, Smugglers Notch, Vermont -- 4.2.2 Life Cycle Assessment: Inventory, Classification, Valuation, and Data Bases. December 2-3, 1991, Leiden, The Netherlands -- 4.2.3 A Conceptual Framework for Life Cycle Impact Assessment. February 1-7, 1992, Sandestin, Florida -- 4.2.4 Data Quality: A Conceptual Framework. October 4-9, 1992, in Wintergreen, Virginia -- 4.2.5 Code of Practice. Sesimbra, Portugal, March 31-April 3, 1993 -- 4.3 SETAC LCA Workgroups from 1994 to 2000 -- 4.4 SETAC LCA Workshops and Initiatives up from 1999 -- 4.4.1 Application of Life Cycle Assessment to Public Policy, August 14-19, 1995, Wintergreen, VA, USA -- 4.4.2 A Second Wave of LCA Workshops -- 5 SETAC and the International Organization for Standardization -- 6 On-Going SETAC Activities -- 6.1 Global Advisory Groups -- 7 UNEP/SETAC Life Cycle Initiative -- 8 SETAC's Role in Advancing the Use of LCA in the Building Sector -- 9 Future Role of SETAC -- 9.1 Expanding the Use of LCA -- 9.2 LCA Case Studies -- 9.3 Additional Pellston Workshops -- 9.4 On-Going Effort with the UNEP/SETAC Life Cycle Initiative -- 9.5 Impact Assessment Advancement -- 9.6 Alternative Assessments -- 9.7 LCA in Developing Countries -- Appendix-Glossary -- References -- Chapter-3 -- The International Standards as the Constitution of Life Cycle Assessment: The ISO 14040 Series and its Offspring -- 1 Introduction -- 1.1 History of LCA Standards Development -- 1.1.1 The Early Days -- 1.1.2 The First Revision -- 1.1.3 The Proliferation -- 1.2 Relevance of ISO Standards on LCA -- 1.3 ISO's Standardization Process -- 2 The Core Standards of LCA: ISO 14040 and ISO 14044 -- 3 The Spin-off Standards. , 3.1 ISO 14025-Type III Environmental Product Declarations -- 3.2 ISO 14047-Examples of Impact Assessement -- 3.3 ISO 14048-Data Documentation Format -- 3.4 ISO 14049-Examples of Inventory Analysis -- 4 The Future Standards Based on ISO 14040/44 -- 4.1 ISO 14045-Eco-Efficiency Assessment -- 4.2 ISO 14046-Water Footprint -- 4.3 ISO/TS 14067-Carbon Footprint -- 4.4 ISO 14071-Critical Review -- 4.5 ISO 14072-Organizational LCA (OLCA) -- 5 Summary and Outlook -- Appendix-Glossary -- References -- Chapter-4 -- The UNEP/SETAC Life Cycle Initiative -- 1 Introduction -- 2 The UNEP/SETAC Life Cycle Initiativeand The International Journal of Life Cycle Assessment -- 3 Main Contributions from 2002 to 2012 of the Life Cycle Initiative to the International Community and Best Examples Worldwide -- 3.1 Phase 1-Creating a Global Community -- 3.1.1 The Life Cycle Management Programme -- 3.1.2 The Life Cycle Inventory Programme -- 3.1.3 The Life Cycle Impact Assessment Programme -- 3.1.4 Crosscutting Activities -- 3.2 Phase 2-Becoming a Stakeholder -- 3.2.1 Overall Structure -- 3.2.2 Deliverables -- 3.2.3 Running a Multi-Stakeholder Process: Global Guidance for LCA Databases -- 4 Key Messages Based on Work Conducted During the Last 10 Years -- 4.1 Life Cycle Thinking in the Private Sector-Ahead of the Curve -- 4.2 Life Cycle Thinking in the Public Sector-Potential for Improvement -- 4.3 Life Cycle Methodologies, Impact Assessment and Data-The Foundation for Informed Decision-Making -- 4.4 Life Cycle Sustainability Approaches-Measuring Triple Bottom Line Impacts -- 4.5 Trade-Offs and Unexpected Consequences-Avoiding the Pitfalls -- 4.5.1 Trade-Offs Between Stages of the Product Value Chain -- 4.5.2 Trade-Offs Between Environmental Impact Categories -- 4.5.3 Trade-Offs Between Sustainability Pillars: Environmental, Social, Economic. , 4.5.4 Trade-Offs Between Societies/Regions -- 4.5.5 Generational Trade-Offs -- 4.5.6 Relevant Activities in Last 10 Years -- 4.6 Life Cycle Initiative Networks-Growing in Numbers and Expertise -- 4.6.1 The International Life Cycle Network -- 4.6.2 Life Cycle Jobs are Green Jobs -- 4.6.2 Accomplishments in Phases 1 and 2 -- 4.7 Communicating Life Cycle Information-The Right Story for Every Audience -- 5 The Future of Life Cycle Thinking and Phase 3 of the Life Cycle Initiative -- 5.1 Consultation Process -- 5.2 New Strategic Approach and Programmes -- 5.2.1 Programme on Data -- 5.2.2 Programme on Methodologies -- 5.2.3 Programme on Product Sustainability Information -- 5.2.4 Programme on Capacity Building and Implementation -- 5.2.5 Programme on Communication and Stakeholder Outreach -- 5.3 Setting up the Baseline for Phase 3 of the UNEP/SETAC Life Cycle Initiative-Monitoring Progress by Key Indicators -- 6 Conclusions and Perspectives -- Appendix-Glossary -- References -- Chapter-5 -- Life Cycle Assessment as Reflected by the International Journal of Life Cycle Assessment -- 1 Introduction -- 2 Milestones in Int J Life Cycle Assess -- 3 Institute for Scientific Information (ISI)-Impact Factor -- 4 Online Publications -- 5 The National Societies -- 5.1 LCA Society of Japan -- 5.2 Indian Society for LCA (ISLCA) -- 5.3 Korean Society for LCA (KSLCA) -- 5.4 Australian LCA Society (ALCAS) -- 5.5 Life Cycle Association of New Zealand (LCANZ) -- 5.6 Other LCA Organisations and Networks -- 5.6.1 SPOLD-Society for the Promotion of Life Cycle Development -- 5.6.2 LCANET-European Network for Strategic Life-Cycle Assessment Research and Development. A Strategic Research Programme for Life Cycle Assessment -- 5.6.3 CHAINET-European Network on Chain Analysis for Environmental Decision Support -- 5.6.4 ISOLP-International Society for LCA Practitioners. , 5.6.5 UNEP/SETAC Life Cycle Initiative -- 5.6.6 Swiss Discussion Forum on Life Cycle Assessment -- 5.6.7 LCA Activities in Spain, Italy and Greece -- 6 Topics and Subject Areas -- 6.1 Life Cycle Management -- 6.1.1 Editorial: 'How to Communicate LCA Results' by Walter Klöpffer and Almut B. Heinrich, Int J Life Cycle Assess 5(3): 125 (2000) -- 6.1.2 Editorial: 'Two Planets and One Journal' by Walter Klöpffer and Almut B. Heinrich, Int J Life Cycle Assess 6(1) 1-3 (2001) -- 6.1.3 LCM in the Internet-Journal 'Gate to Environmental and Health Science (EHS)' and the Discussion Forum 'Global LCA Village' -- 6.1.4 Editorial: 'LCM-Integrating a New Section' by Almut B Heinrich and Walter Klöpffer, Int J Life Cycle Assess 7(6): 315-316 (2002) -- 6.1.5 The LCM Conferences -- 6.2 Life Cycle Costing (LCC) -- 6.3 Social Life Cycle Assessment (SLCA) -- 6.4 Life Cycle Sustainability Assessment (LCSA) -- 7 Special Issues and Supplements -- 8 ISO Standardisation of LCA -- 9 Conclusion -- References -- Chapter-6 -- Strengths and Limitations of Life Cycle Assessment -- 1 Introduction -- 2 Strengths and Limitations-Perceived and Real-in Life Cycle Assessment -- 2.1 Matching the Goal of the Assessment to the Approach -- 2.2 Gathering the Inventory Data can be Very Resource and Time Intensive -- 2.3 Missing Impact Data and Models for LCIA -- 2.4 Dealing with Data Uncertainty -- 2.5 Distinguishing between Life Cycle Impact Assessment and Risk Assessment -- 2.6 LCA Does not Always (usually) Declare a 'Winner' -- 2.7 LCA Results should be Supplemented by Other Tools in Decision Making -- 2.8 Allocating Environmental Burdens Across Co-products -- 2.9 Assigning Credit for Avoided Burden -- 2.10 Expanding the Boundaries (consequential LCA) -- 3 Life Cycle Thinking -- 4 Conclusion -- References -- Chapter-7. , Challenges in Life Cycle Assessment: An Overview of Current Gaps and Research Needs.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Hauppauge :Nova Science Publishers, Incorporated,
    Keywords: Water resources development. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (248 pages)
    Edition: 1st ed.
    ISBN: 9781634852050
    Series Statement: Water Resource Planning, Development and Management
    DDC: 333.79
    Language: English
    Note: Intro -- Preface -- Introduction - Perspectives of Water Resources Management -- Abstract -- 1.1. Water and the Society -- 1.2. Availability of Water on the Earth -- 1.3. Hydrologic Cycle and Human Intervention -- 1.4. Global Climate Change and the Water Resource -- 1.5. Future Challenges of Water Resources Management -- Relevant Journals -- References -- Assessment of Water Resources -- Abstract -- 2.1. Estimation of Surface Water Resource -- 2.2. Investigation of Groundwater -- 2.2.1. Planning an Investigation -- 2.2.2. Steps Involved in a Site Investigation -- Field Reconnaissance -- Literature Search -- Determination of Data Requirement and Selection of Method -- 2.2.3. Approaches of Investigation -- 2.3. MechanicalApproach -- Drilling of Exploratory Bore Wells -- Avoiding Cross Contamination during Drilling -- Limitations -- Sampling Interval and Representation -- 2.4. Geo-PhysicalApproach -- Principle of Geophysical Approach -- 2.5. ElectricalMethod -- Principle of the Method -- 2.6. Electromagnetic Method -- Principle of the Method -- 2.7. Estimation of Groundwater Potential -- 2.7.1. Quantitative Estimation of Groundwater -- 2.7.2. Groundwater Availability for Pumping in Terms of Potential Recharge -- 2.7.3. Groundwater Availability in Terms of Safe Yield -- Determination of Specific Yield -- 2.7.4. Water Budget Approach -- Expression of Water Budget -- I-Input -- Estimation of Potential Recharge -- O-Output -- Surface Runoff -- Groundwater Discharge -- Evapotranspiration -- S - Storage -- Estimation of Absolute Change (Amount) -- 2.8. Groundwater Development Potential and Issues in Saline/Coastal Areas -- 2.9. Environmental Flow Assessment -- Building Block Method (BBM) -- Drift Method -- Relevant Journals -- Exercises -- Estimation of Groundwater Recharge -- Abstract -- 3.1. Concept, Purpose and Significance of Recharge Estimation. , Concept -- Purpose -- Significance -- 3.2. Relevant Terminologies -- Infiltration -- Percolation -- Seepage -- Actual Recharge -- Potential Recharge -- Direct/Diffuse Recharge -- Indirect Recharge -- Localized/Focused Recharge -- Artificial Recharge -- Natural Recharge -- Induced Recharge -- Base-Flow -- Darcy's Equation or Law -- Deep Drainage -- Drainage Basin -- Groundwater Basin -- Hydrologic Budget or Water Budget -- Piston Flow or Plug Flow -- Preferential Recharge -- Recharge Area -- Rejected Recharge -- Residence Time -- Residual -- 3.3. Sources and Mechanism of Recharge -- 3.4. Factors Affecting Recharge -- Soil Factor -- Topography -- Land-Surface and Vegetation -- Sub-Surface Geology -- Climate -- Rainfall Amount and Its Distribution -- Evaporative Demand of the Atmosphere -- Existence of Water Bodies or Streams -- Storage Capacity of the Aquifer -- Depth to Aquifer -- 3.5. GW Recharge-Discharge/Withdrawal Relationship and Sustainability Issues -- 3.6. Functional Form of Recharge and Limiting Conditions -- 3.6.1. Functional Form -- 3.6.2. Limiting Conditions -- 3.7. Recharge Estimation - Available Approaches and Methods -- Initiating Recharge Study/Preliminary Recharge Estimate -- Recharge Estimation Techniques -- 3.7.1. Water Budget (or Water Balance) Method -- Principle of the Method -- Boundaries Require -- Mathematical Formulation of Water Budget Equation -- Merits of Water Budget Method -- Demerits of Water Budget Method -- 3.7.2. Water-Table Fluctuation Method -- Principle of the Method -- Appropriateness/Suitability of the Method -- Assumptions -- Mathematical Formulation -- Limitations -- Merits of the Method -- Demerits of the Method -- 3.7.3. Lysimeter Method -- Measurement Procedure -- ET Measurement -- Limitations -- Merits of Lysimeter Method -- Demerits/Shortcomings -- 3.7.4. Seepage Meter Method -- Principle of the Method. , Detail Method -- Merits -- Demerits -- 3.7.5. Field Plot Water Balance -- Principle -- Detail Method -- Merits of the Method -- Demerits -- 3.7.6. Soil-Water Balance Approach -- Merits -- Demerits -- 3.7.7. Zero-Flux Plane -- Principle -- Methods -- In Absence of a Zero Flux Plane -- Limitations -- Merits -- Demerits -- 3.7.8. Darcy's Law Approach -- 3.7.8.1. Darcy's Law Method for Unsaturated Zone -- Principle -- Method -- Suitability/Limitations -- Merits -- Demerits -- 3.7.8.2. Darcy's Law Method for Saturated Zone -- Merits -- Demerits/Shortcomings -- 3.7.9. Base-Flow Discharge -- Principle of the Method -- Detail Method -- Merits -- Demerits -- 3.7.10. Numerical Method -- 3.7.10.1. Numerical Method for Watershed modeling -- Merits -- Demerits -- 3.7.10.2. Numerical Modeling for Unsaturated-Zone Studies -- Merits -- Demerits -- 3.7.10.3. Numerical Model for Saturated-Unsaturated Flow -- Merits -- Demerits -- 3.7.11. Tracer Techniques -- Characteristics of an Ideal Tracer -- 3.7.11.1. Chemical Tracer -- Perspectives and Procedure -- Merits -- Demerits -- 3.7.11.2. Isotopic Tracer -- Stable Isotope -- Radioactive Isotope -- Detail Working Method -- Merits -- Demerits -- 3.7.11.3. Environmental Tracers -- Chloride Mass Balance (CMB) Approach -- Perspectives and Methods -- Merits -- Demerits -- 3.7.11.4. Historical Tracer -- Perspectives and Procedure -- Merits -- Demerits -- 3.7.11.5. Groundwater Dating -- Perspectives and Methods -- Age from 3H/3He Data -- Use of 14C for Groundwater Age -- Recharge Rate from GW Age -- Characteristics and Considerations -- Merits -- Demerits -- 3.7.11.6. Limitations/Restrictions of Using Tracer -- 3.7.11.7. Interpretation of Tracer Results -- 3.7.11.8. Merits of Tracer Techniques over Other Methods, and Concerns -- Merits -- Concerns -- 3.7.12. Empirical Method -- Anderson et al. (1992) Formula -- Chaturvedi Formula. , Kumar and Seethapathi Formula -- Merits of Empirical Methods -- Demerits -- Future Refinement -- 3.7.13. Application of Multiple Techniques -- 3.8. Recharge Estimation Related to Aquifer Vulnerability to Contamination -- 3.9. Choosing an Appropriate Method for Recharge Estimation -- 3.9.1. Factors to be Considered in Selecting a Recharge Estimation Method -- Aim or Objective of Recharge Estimation -- Required Accuracy of Recharge Estimate -- Geomorphology of the Target Area -- Climate -- Geology -- Source and Mechanism of Recharge -- Temporal and Spatial Scale Required -- Availability of Time and Money -- Limitations/Suitability of the Methods themselves -- 3.9.2. Optimization among Different Factors and Estimating Recharge -- 3.10. Developing a Conceptual Model of Recharge/Conceptualizing a Recharge Model -- 3.11. Challenges in Predictive Relations and Recharge Generalization -- 3.12. Geological Mapping of the Recharge Areas -- General Guidelines for Mapping Recharge Area -- 3.13. Methods for Estimating/Measuring Components of Water Budget Equation -- 3.13.1. Evapotranspiration -- Direct Measurement of ET by Lysimeter -- Indirect Method -- From Field Plot -- From Crop Coefficient -- 3.13.2. Surface Runoff -- From Crop Fields -- SCS Runoff Method -- Peak Runoff from Single Storm Event -- 3.14. Worked Out Problems -- Example 3.1 -- Solution -- Example 3.2 -- Solution -- Example 3.3 -- Solution -- Example 3.4 -- Solution -- Example 3.5 -- Solution -- Example 3.6 -- Solution -- Example 3.7 -- Solution -- Relevant Journals -- Questions/Exercise -- References -- Water-Well Construction and Well Hydraulics -- Abstract -- 4.1. Construction of Water-Well -- 4.1.1. Importance of Proper Design and Construction of Well -- 4.1.2. Types of Well -- Bored Wells -- Drilled Wells -- 4.1.3. Well Construction -- 4.1.3.1. Principal Activities in Well Construction. , Site Selection -- Drilling -- 4.1.3.2. Drilling Methods -- 4.1.3.3. Definition of Relevant Terminologies -- 4.2. Well Design -- 4.2.1. Design Elements and Design Considerations -- Well Depth -- Casing Size and Material Type -- Well Screen -- Slot Size Openings -- Screen Length, Pattern, Total Open Area, and Placement -- Screen Material -- Filter Material -- Casing Materials -- 4.2.2. Design Criteria and Procedure -- Diameter of Slot/SCREEN opening -- Screen Open Area -- Length of Screen -- Position of Screen -- Screen Material -- Hydraulic Criteria/Velocity of Water -- Diameter of Screen Pipe, Vertical Velocity -- Gravel Pack/Filter Material -- 4.3. Well Completion and Development -- 4.3.1. Well Completion -- Well Casing and Sealing -- The Annular Seal -- Annulus Seal -- Well Cap -- Filter Material -- 4.3.2. Well Development -- 4.3.3. Disinfection of Well -- 4.3.4. Economic Considerations -- 4.4. Well Hydraulics -- 4.4.1. Relevant Terminologies -- Specific Capacity -- Well Capacity or Yield -- Well Efficiency -- 4.4.2. Well Yield in Aquifer -- 4.4.2.1. Flow of Water to Well in Unconfined Aquifer -- Theim Equation -- 4.4.2.2. Flow of Water to Well in Confined AQUIFER -- Theis Equation -- Derivation of the Equation -- 4.5. Pumping Test/Well Yield Test and Determination of Aquifer Parameters -- 4.5.1. Relevant Terminologies -- Residual Drawdown -- Specific Capacity -- Well Efficiency -- 4.5.2. Perspectives of Pumping Test -- 4.5.3. General Assumptions in Pumping Test -- 4.5.4. Constant Rate Test -- Observation Wells -- 4.5.5. Step Wise Test -- 4.5.6. Analysis of Pump Test Data -- Theis Method -- Cooper-Jacob Method -- Time-Drawdown Approach -- Distance-Drawdown Approach -- Theis Recovery Approach -- Limitations -- Relevant Journals -- Questions/Exercises -- References -- Management of Water Resources -- Abstract. , 5.1. Concept of Water Resources Management.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Energy industries. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (346 pages)
    Edition: 1st ed.
    ISBN: 9780128226674
    Series Statement: Energy Services and Management Series
    DDC: 333.79
    Language: English
    Note: Front Cover -- Energy Services Fundamentals and Financing -- Copyright Page -- Contents -- List of Contributors -- 1 Energy services -- 1 Energy services: concepts, applications and historical background -- 1.1 Introduction -- 1.2 Energy and population growth -- 1.3 Energy saving in buildings -- 1.4 Energy use in agriculture -- 1.5 Renewable energy technologies -- 1.5.1 Solar energy -- 1.5.2 Efficient bioenergy use -- 1.5.2.1 Briquette processes -- 1.5.2.2 Improved cook stoves -- 1.5.2.3 Biogas technology -- 1.5.2.4 Improved forest and tree management -- 1.5.2.5 Gasification application -- 1.5.3 Combined heat and power -- 1.5.4 Hydrogen production -- 1.5.5 Hydropower generation -- 1.5.6 Wind energy -- 1.6 Energy and sustainable development -- 1.7 Global warming -- 1.8 Recommendations -- 1.9 Conclusion -- References -- 2 Energy financing schemas -- 2 The promotion of renewable energy communities in the European Union -- 2.1 Overview -- 2.2 The link between the provision of energy services and the increase of energy efficiency -- 2.3 The efficiency gains stemming from distributed generation of energy production -- 2.4 The concept of renewable energy community -- 2.5 The promotion of renewable energy communities in EU law -- 2.6 The promotion of renewable energy communities in the draft National Energy and Climate Plans -- 2.7 Conclusion -- References -- 3 Financial schemes for energy efficiency projects: lessons learnt from in-country demonstrations -- 3.1 Introduction -- 3.2 The proposed methodology -- 3.3 Innovative financing schemes -- 3.3.1 Crowdfunding -- 3.3.2 Energy performance contracting -- 3.3.3 Green bonds -- 3.3.4 Guarantee funds -- 3.3.5 Revolving funds -- 3.3.6 Soft loans -- 3.3.7 Third-party financing -- 3.4 Case study countries -- 3.4.1 Bulgaria -- 3.4.2 Greece -- 3.4.3 Lithuania -- 3.4.4 Spain -- 3.5 Key actors identification. , 3.6 Knowledge transfer -- 3.6.1 Peer-to-Peer learning -- 3.6.2 Capacity building activities -- 3.7 Conclusions -- References -- 3 Energy systems in buildings -- 4 Energy in buildings and districts -- 4.1 Introduction -- 4.2 Thermal comfort -- 4.3 User behavior -- 4.4 Weather conditions under climate change and growing urbanization -- 4.5 Envelope and materials -- 4.6 From passive to nearly zero-energy building design -- 4.7 Smart buildings and home automation -- 4.8 From smart buildings to smart districts and cities -- 4.9 Concluding discussion -- References -- 5 Renewable energy integration as an alternative to the traditional ground-source heat pump system -- Nomenclature -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Description of the proposed solution -- 5.2.2 Test procedure -- 5.3 Technical calculation -- 5.3.1 Thermal module -- 5.3.1.1 Geothermal energy -- 5.3.1.2 Thermal solar energy -- 5.3.2 Power module -- 5.3.2.1 Photovoltaic solar energy -- 5.3.2.2 Wind energy -- 5.3.3 Contribution of the suggested installation -- 5.4 Economic and environmental analysis -- 5.4.1 Economic analysis -- 5.4.2 Environmental evaluation -- 5.5 Discussion -- 5.5.1 Sensitivity analysis -- 5.5.1.1 Electricity price -- 5.5.1.2 Electric rate -- 5.5.1.3 CO2 emission factor -- 5.6 Conclusions -- Acknowledgments -- References -- 6 Energy-saving strategies on university campus buildings: Covenant University as case study -- 6.1 Introduction -- 6.1.1 Energy modeling software for buildings -- 6.1.2 Energy conservation measures in buildings -- 6.2 Materials and methods -- 6.2.1 Study location -- 6.2.2 Procedure for data collection -- 6.2.3 Instrumentation and procedure for data analysis -- 6.2.4 Economic analysis -- 6.2.5 Assessment of environmental impacts -- 6.3 Results and discussions -- 6.3.1 Result of energy audit in cafeterias1 and 2. , 6.3.2 Result of energy audit in Mechanical Engineering building -- 6.3.3 Result of energy audit in university library -- 6.3.4 Result of energy audit in health center -- 6.3.5 Result of energy audit in the students' halls of residence -- 6.3.6 Qualitative recommendation analysis -- 6.3.6.1 Replacement of lighting fixtures with light-emitting diode bulbs -- 6.3.6.2 Installation of solar panels on the roofs of selected buildings -- 6.4 Conclusion -- References -- 7 Energy conversion systems and Energy storage systems -- 7.1 Introduction -- 7.2 Energy systems in buildings -- 7.2.1 Energy generation systems -- 7.2.1.1 Combined heat and power system -- 7.2.1.2 Solar photovoltaic system -- 7.2.1.3 Solar thermal system -- 7.2.1.4 Organic Rankine cycle system -- 7.2.1.5 Geothermal system -- 7.2.1.6 Wind turbine system -- 7.2.2 Energy conversion systems -- 7.2.2.1 Heating systems -- 7.2.2.2 Cooling systems -- 7.2.2.3 Ventilation systems -- 7.2.3 Energy storage systems -- 7.2.3.1 Battery energy storage system -- 7.2.3.2 Thermal energy storage system -- 7.3 Conclusion -- References -- 8 Energy systems in buildings -- 8.1 Introduction -- 8.2 Energy-efficient building envelopes -- 8.2.1 Increasing thermal resistance of the building envelope -- 8.2.2 Climate-specific design of energy-efficient envelopes -- 8.3 Renewable energy sources for building energy application -- 8.3.1 Analyzing electrical/thermal loads of a building -- 8.3.2 Consideration of local codes and requirements for renewable energy systems -- 8.3.3 Solar energy systems -- 8.3.3.1 Solar water heating -- 8.3.3.1.1 Flat-plate collectors -- 8.3.3.1.2 Evacuated tube solar thermal collectors -- 8.3.3.1.3 Choice of solar thermal collectors -- 8.3.3.1.3.1 Cost -- 8.3.3.1.3.2 Performance -- 8.3.3.1.3.3 Installation -- 8.3.4 Building-integrated photovoltaic systems -- 8.4 Solar thermal energy storage. , 8.4.1 Types of thermal energy storage technologies -- 8.4.1.1 Sensible heat storage system -- 8.4.1.1.1 Sensible solid heat storage system -- 8.4.1.1.2 Sensible liquid heat storage system -- 8.4.1.2 Sensible cold storage system -- 8.4.1.3 Latent heat storage system -- 8.4.1.4 Thermochemical storage -- 8.5 Wind energy -- 8.5.1 Brief introduction -- 8.5.2 Wind resource assessment -- 8.5.3 Building-integrated/mounted wind turbine -- 8.5.3.1 Building-integrated wind turbines -- 8.5.3.2 Building-mounted wind turbines -- 8.5.3.3 Building-augmented wind turbines -- 8.5.4 Optimizing building-integrated/mounted wind turbine devices -- 8.5.5 Small/micro wind turbines for building application -- 8.6 Heat pumps -- 8.6.1 Air-source heat pumps -- 8.6.2 Ground-source heat pumps -- 8.6.3 Working principles of heat pumps -- 8.6.3.1 The heating cycle -- 8.6.3.2 The cooling cycle -- 8.6.3.3 The defrost cycle -- 8.6.4 Performance measures -- 8.7 Biomass -- 8.8 Summary -- References -- 4 Energy efficiency in industrial sector -- 9 Energy efficiency and renewable energy sources for industrial sector -- 9.1 Introduction -- 9.2 Global energy trends -- 9.3 Energy consumption and emissions in industry -- 9.3.1 General trends -- 9.3.2 Energy and carbon-intensive industrial sectors -- 9.4 Energy efficiency in industry for climate change mitigation -- 9.4.1 The need for innovation -- 9.5 Energy efficiency and renewable sources in industry -- 9.5.1 Bioenergy -- 9.5.2 Solar heat -- 9.6 Case study in Turkey -- 9.6.1 National Energy Efficiency Action Plan -- 9.6.2 General overview -- 9.6.3 Industry and technology -- 9.6.4 Aim of the development plans -- 9.7 Policy options -- 9.7.1 Lessons learned -- 9.7.2 International agreements -- 9.7.3 Procurement -- 9.8 Conclusions -- Acknowledgment -- References -- 10 Energy efficiency in tourism sector: eco-innovation measures and energy. , 10.1 Introduction -- 10.2 State of the arts -- 10.3 Methods and data -- 10.4 Results and discussion -- 10.5 Conclusions -- References -- 5 Energy services markets: development and status quo -- 11 Energy service markets: status quo and development -- 11.1 Introduction -- 11.2 The European framework for energy services -- 11.2.1 Legal framework -- 11.2.2 The European Union energy service markets: market volume, offers, and barriers -- 11.3 The German energy service market -- 11.3.1 Legal framework and information sources -- 11.3.2 Market overview -- 11.4 Developments of segments of the service market -- 11.4.1 Advice services -- 11.4.2 Energy management -- 11.4.3 Contracting -- 11.5 Market development -- 11.6 Conclusions: lessons learned from the German case -- References -- 12 Worldwide trends in energy market research -- 12.1 Introduction -- 12.2 Data -- 12.3 Results -- 12.3.1 Subjects from worldwide publications -- 12.3.2 Journals metric analysis -- 12.3.3 Countries, affiliations, and their main topics -- 12.3.4 Keywords from worldwide publications -- 12.3.5 Cluster analysis based on keywords -- References -- 13 Which aspects may prevent the development of energy service companies? The impact of barriers and country-specific condi... -- 13.1 Introduction -- 13.2 Which are the problems confronted by energy efficiency actions and policy instruments? -- 13.3 Which are the most relevant barriers confronted by energy service companies in different regions? -- 13.4 Removing barriers and promoting energy service companies -- 13.4.1 Actions to remove economic and market barriers -- 13.4.2 Actions to remove funding barriers -- 13.4.3 Enabling frameworks for energy service companies and other energy efficiency actions -- 13.5 Lessons learned and conclusions -- Acknowledgments -- References -- Further reading -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...