GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (227,981)
  • English  (227,713)
  • Swedish  (240)
  • Polish  (49)
Document type
Source
Language
Years
DDC
RVK
  • 1
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Nanostructured materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (352 pages)
    Edition: 1st ed.
    ISBN: 9783527831456
    Language: English
    Note: Cover -- Title Page -- Copyright -- Contents -- Preface -- Chapter 1 Introduction: Scope of the Book -- 1.1 Introduction: Green Chemistry, Solvent‐free Synthesis, and Nanocatalysts -- 1.2 Topics Covered in this Book -- 1.3 Solvent‐Free Synthesis of Nanocatalysts -- 1.4 Solvent and Catalyst‐Free Organic Transformations -- 1.5 Solvent‐Free Reactions Using NCs -- 1.5.1 Different Metal Oxides as a Catalyst/Support in Solvent‐Free Reaction -- 1.5.1.1 Titanium Oxide -- 1.5.1.2 Tin Oxide -- 1.5.1.3 Manganese Oxide (MnOx) -- 1.5.1.4 Zinc Oxide -- 1.5.1.5 Aluminum Oxide -- 1.5.1.6 Iron Oxide -- 1.5.2 Silica‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 1.5.3 Carbon‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 1.5.4 Nitride‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 1.5.5 Ionic Liquid‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 1.6 Present Status and Future Direction -- References -- Chapter 2 Strategies for the Preparation of Nanocatalysts and Supports Under Solvent‐Free Conditions -- 2.1 Introduction -- 2.2 Mechanochemistry -- 2.2.1 Ball Milling -- 2.2.2 Mortar and Pestle -- 2.3 Thermal Treatment -- 2.3.1 Simple Thermal Treatment -- 2.3.2 Thermal Decomposition -- 2.3.3 Microwave Heating Energy -- 2.4 Plasma‐Assisted Methods -- 2.4.1 Thermal Plasma Method -- 2.4.2 Cold Thermal Plasma Method -- 2.5 Deposition Method -- 2.5.1 Atomic Layer Deposition (ALD) Method -- 2.5.2 Chemical Vapor Deposition (CVD) Method -- 2.6 Conclusion and Future Perspective -- Acknowledgments -- References -- Chapter 3 Solvent‐ and Catalyst‐Free Organic Transformation -- 3.1 Introduction -- 3.2 Solvent‐ and Catalyst‐Free Organic Transformations -- 3.2.1 Mechanochemistry -- 3.2.2 Microwave Irradiation -- 3.2.3 Classical Heating -- 3.2.4 Ultrasound Irradiation. , 3.3 Conclusion -- References -- Chapter 4 Metal Oxides as Catalysts/Supports in Solvent‐Free Organic Reactions -- 4.1 Introduction -- 4.2 Different Metal Oxides as a Catalyst/Support in Solvent‐Free Reactions -- 4.2.1 Titanium Dioxide‐Based Catalysts -- 4.2.2 Tin Oxide‐Based Catalysts -- 4.2.3 Manganese Oxide‐Based Catalysts -- 4.2.4 Zinc Oxide‐Based Catalysts -- 4.2.5 Aluminum Oxide‐Based Catalysts -- 4.2.6 Iron Oxide‐Based Catalysts -- 4.2.6.1 Fe3O4‐Based Catalyst/Support -- 4.2.6.2 Fe2O3‐Based Catalyst/Support -- 4.3 Conclusion -- References -- Chapter 5 Silica‐Based Materials as Catalysts or Supports in Solvent‐Free Organic Reactions -- 5.1 Solvent‐Free Reactions Over Silica Gel -- 5.2 Silica Nanoparticles and its Applications -- 5.3 Zeolites and Hierarchical Zeolite Structures -- 5.4 Conclusion -- References -- Chapter 6 Carbon‐Based Materials as Catalysts/Supports in Solvent‐Free Organic Reactions -- 6.1 Introduction -- 6.2 Solvent‐Free Catalysis Using Carbon‐Based Materials -- 6.2.1 Activated Carbons (ACs) -- 6.2.1.1 Acetylation Reactions -- 6.2.1.2 Oxidation of Cyclohexane -- 6.2.2 Carbon‐Based Solid Acid (CBSA) Catalysts -- 6.2.2.1 Cross‐Aldol Condensation of Ketones with Aromatic Aldehydes -- 6.2.2.2 Substituted Imidazoles -- 6.2.2.3 Amidoalkyl Naphthols -- 6.2.2.4 Reductive Amination of Aldehydes and Ketones -- 6.2.2.5 Xanthenes and Dibenzoxanthenes -- 6.2.2.6 Dihydropyrimidinone Compounds (Biginelli Reaction) -- 6.2.2.7 Acylation, Acetalization, Thioacetalization of Aldehydes -- 6.2.3 Carbon Nanotubes (CNTs) -- 6.2.3.1 Esterification of Alcohols -- 6.2.3.2 Benzyl Alcohol Oxidation -- 6.2.3.3 Phenol Derivatives Antioxidants -- 6.2.3.4 Acrylonitrile Derivatives -- 6.2.4 Graphene Oxide (GO) -- 6.2.4.1 Alkylaminophenols Derivatives -- 6.2.4.2 N‐Arylation Reactions -- 6.2.4.3 Oxidation of Benzylic Alcohols. , 6.2.4.4 Aldol and Konevenagel Condensation Reaction -- 6.2.4.5 Oxidation of Cyclohexene -- 6.2.4.6 Oxidation of Hydrazide and Pyrazole Derivatives -- 6.2.5 Porous Carbon Materials -- 6.2.5.1 Oxidation of Alcohol and Hydrocarbons -- 6.2.5.2 Coupling of Amines -- 6.3 Summary and Future Perspectives -- References -- Chapter 7 Nitride‐Based Nanostructures for Solvent‐Free Catalysis -- 7.1 Carbon Nitride -- 7.1.1 Introduction -- 7.1.2 Synthesis of Carbon Nitride -- 7.1.3 Modification of Carbon Nitrides -- 7.1.4 Solvent‐Free Catalysis with Carbon Nitrides -- 7.2 Boron Nitride -- 7.2.1 Introduction -- 7.2.2 Synthesis and Modification of Boron Nitride -- 7.3 Molybdenum Nitride -- 7.3.1 Introduction -- 7.3.2 Synthesis of Molybdenum Nitride -- 7.3.3 Solvent‐Free Catalytic Application of Molybdenum Nitride -- 7.4 Aluminum Nitride -- 7.4.1 Introduction -- 7.4.2 Synthesis of Aluminum Nitride -- 7.4.2.1 Solvent‐Free Synthesis -- 7.4.3 Solvent‐Free Application of Aluminum Nitride -- 7.5 Conclusion -- References -- Chapter 8 Supported Ionic Liquids for Solvent‐Free Catalysis -- 8.1 Introduction -- 8.2 Supported Ionic Liquids -- 8.3 Building Blocks of SILs -- 8.3.1 Ionic Segment -- 8.3.2 Solid‐Support Segment -- 8.3.2.1 Silica Gels -- 8.3.2.2 Ordered Mesoporous Silicas -- 8.3.2.3 Carbon Nanotubes (CNTs) -- 8.3.2.4 Silica‐Coated Magnetic Nanoparticles (SMNPs) -- 8.4 SIL Catalytic Systems -- 8.5 Supported IL Solvent‐Free Catalysis -- 8.6 Solvent‐Free Hydrogenation of Olefins -- 8.7 Solvent‐Free Heck Reaction -- 8.8 Solvent‐Free Multicomponent Reactions -- 8.8.1 Synthesis of Pyran‐Based Heterocycles -- 8.8.2 Synthesis of 1,4‐Dihydropyridine (Hantzsch Reaction) -- 8.8.3 Synthesis of 3,4‐Dihydropyrimidine‐2(1H)‐One/Thiones (Biginelli Reaction) -- 8.8.4 Synthesis of 1‐Amidoalkyl Naphthol -- 8.8.5 Miscellaneous Solvent‐Free Multicomponent Reactions. , 8.9 Solvent‐Free Condensation Reactions -- 8.9.1 Solvent‐Free Friedländer Condensation -- 8.9.2 Solvent‐Free Knoevenagel Condensation -- 8.9.3 Esterification -- 8.10 Solvent‐Free CO2 Conversion Reactions -- 8.11 Solvent‐Free Oxidation Reactions -- 8.12 Miscellaneous Solvent‐Free Organic Reactions -- 8.13 Conclusion -- References -- Chapter 9 Present Status and Future Outlook -- 9.1 Summary -- 9.2 Future Outlook -- Acknowledgments -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Sewage-Purification-Oxidation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (360 pages)
    Edition: 1st ed.
    ISBN: 9781394167272
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Advances in Photocatalysts Synthesis -- Chapter 1 Advancement and New Challenges in Heterogeneous Photocatalysts for Industrial Wastewater Treatment in the 21st Century -- 1.1 Introduction -- 1.2 Development of Heterogeneous Photocatalysts -- 1.3 Mechanism of Action of Heterogeneous Photocatalysis -- 1.4 Recent Advances in Heterogeneous Photocatalyst -- 1.5 Heterostructure Photocatalysts for the Degradation of Organic Pollutants -- 1.6 Photoreactors -- 1.7 Photoreactors for the Degradation of Volatile Organic Compounds -- 1.7.1 Annular Reactors -- 1.7.2 Plate Reactor -- 1.7.3 Packed Bed Reactors -- 1.7.4 Honeycomb Monolith Reactors -- 1.7.5 Fluidized Bed Reactors -- 1.7.6 Batch Reactors -- 1.7.7 Parabolic Trough Photoreactors -- 1.7.8 Inclined Flat Photoreactors -- 1.7.9 Gas Phase Photoreactors -- 1.8 Advantages and Disadvantages of Heterogeneous Photocatalysis -- 1.9 Conclusion -- Acknowledgment -- References -- Chapter 2 Role of Heterogeneous Catalysts for Advanced Oxidation Process in Wastewater Treatment -- Abbreviations -- 2.1 Introduction -- 2.1.1 Advanced Oxidation Processes (AOPs) -- 2.1.2 AOPs Classification -- 2.1.2.1 Catalytic Oxidation -- 2.1.2.2 Heterogeneous Catalytic Oxidation -- 2.2 Effect of Pollutant -- 2.3 Type of Catalysts -- 2.3.1 Metal Organic Frameworks -- 2.3.1.1 Hydro (Solvo) Thermal Technique -- 2.3.2 Metal Oxides -- 2.3.2.1 Coprecipitation Method -- 2.3.2.2 Hydrothermal Synthesis -- 2.3.2.3 Sol-Gel Process -- 2.3.2.4 Bioreduction Method -- 2.3.2.5 Solvent System-Based Green Synthesis -- 2.3.3 Perovskites -- 2.3.3.1 Ultrasound-Assisted Synthesis of Perovskites -- 2.3.3.2 Microwave-Assisted Synthesis of Perovskites -- 2.3.3.3 Mechanosynthesis of Perovskites -- 2.3.4 Layered Double Hydroxides -- 2.3.4.1 Coprecipitation by the Addition of Base. , 2.3.5 Graphene -- 2.3.5.1 Electrochemical (EC) Processes -- 2.3.5.2 Water Electrolytic Oxidation -- 2.4 Some Recent Heterogeneous Catalysts for Advanced Oxidation Process -- 2.5 Conclusions and Future Prospect -- Acknowledgement -- References -- Chapter 3 Green Synthesis of Photocatalysts and its Applications in Wastewater Treatment -- 3.1 Introduction -- 3.2 Photocatalysts and Green Chemistry -- 3.2.1 Nanophotocatalysts (NPCs) -- 3.2.2 Plant-Mediated Green Synthesis of NPCs -- 3.2.3 Biopolymer-Mediated Synthesis of NPCs -- 3.2.3.1 Alginic Acid -- 3.2.3.2 Carrageenan -- 3.2.3.3 Chitin and Chitosan -- 3.2.3.4 Guar Gum -- 3.2.3.5 Cellulose -- 3.2.3.6 Xanthan Gum -- 3.2.4 Green Synthesis of NPCs Using Bacteria, Algae, and Fungus -- 3.2.5 Characterization of NPCs Using Various Analytical Techniques -- 3.2.5.1 UV-Visible Spectroscopy -- 3.2.5.2 XRD -- 3.2.5.3 SEM, HR-TEM, EDX, and AFM -- 3.2.5.4 Fourier Transform Infrared Spectroscopy -- 3.2.5.5 Dynamic Light Scattering -- 3.2.5.6 Brunauer-Emmett-Teller (BET) -- 3.2.5.7 Barrett-Joyner-Halenda -- 3.2.6 Application of Green Synthesized NPCs in Wastewater Treatment -- 3.3 Limitations and Future Aspects -- 3.4 Conclusion -- References -- Chapter 4 Green Synthesis of Metal Ferrite Nanoparticles for the Photocatalytic Degradation of Dyes in Wastewater -- Abbreviations -- 4.1 Introduction -- 4.2 Metal Ferrite Nanoparticles -- 4.3 General Synthesis Methods of Metal Ferrites and Their Limitations -- 4.4 Biological Synthesis of Metal Ferrite Nanostructures -- 4.4.1 Synthesis of Metal Ferrite Nanostructures Using Bacteria -- 4.4.2 Synthesis of Metal Ferrites Nanostructures Using Fungi -- 4.4.3 Synthesis of Metal Ferrites Nanostructures Using Plant Extracts -- 4.5 Plant-Derived Metal Ferrites as Photocatalysts for Dye Degradation. , 4.5.1 Effect of Depositing Noble and Transition Metal on Metal Ferrites for Photodegradation -- 4.5.2 Effect of Carbon Deposited on Metal Ferrites for Photocatalytic Degradation -- 4.5.3 Effect of Coupling Metal Oxide Semiconductors with Metal Ferrites for Photocatalytic Degradation -- 4.5.4 Biological Applications of Plant-Derived Metal Ferrites -- 4.6 Challenges of these Materials and Photocatalysis -- 4.7 Conclusion: Future Perspectives -- References -- Part 2: Advanced Oxidation Processes -- Chapter 5 Selected Advanced Oxidation Processes for Wastewater Remediation -- 5.1 Introduction -- 5.2 Photocatalysis and Ozonation -- 5.2.1 Photocatalysis -- 5.2.2 Ozonation -- 5.3 Hybrid AOP Technologies -- 5.3.1 Hydrodynamic Cavitation -- 5.3.2 Hybrid AOP Systems Based on Hydrodynamic Cavitation -- 5.3.3 Hybrid AOP Systems Based on Ultrasound Radiation -- 5.3.3.1 Sonoelectrochemical Oxidation -- 5.3.3.2 Sonophotocatalytic Degradation -- 5.4 Membrane-Based AOPs -- 5.5 Conclusion and Future Perspectives -- References -- Chapter 6 Advanced Oxidation Processes-Mediated Removal of Aqueous Ammonia Nitrogen in Wastewater -- Abbreviations -- 6.1 Introduction -- 6.2 Basic Chemistry and Occurrence of Ammonia Nitrogen -- 6.2.1 Basic Chemistry of Ammonia Nitrogen -- 6.2.2 Sources of Ammonia Nitrogen -- 6.2.3 Effects of Ammonia Nitrogen on Aquaculture Species -- 6.3 Photocatalytic Technique for Removal of Aqueous Ammonia Nitrogen From Wastewater -- 6.3.1 TiO2/TiO2-Based Photocatalyst -- 6.3.2 Modified TiO2 Photocatalyst -- 6.4 Ozonation Technique for Removal of Aqueous Ammonia Nitrogen From Wastewater -- 6.4.1 Noncatalytic Ozonation of Ammonia Nitrogen -- 6.4.2 Catalytic Ozonation of Ammonia Nitrogen -- 6.5 Conclusion and Future Prospects -- Acknowledgments -- References -- Part 3: Design and Modelling of Photoreactors. , Chapter 7 Recent Advances in Photoreactors for Water Treatment -- 7.1 Introduction -- 7.2 Photocatalysis Fundamentals and Mechanism -- 7.3 Configuration of Photoreactor -- 7.3.1 Source of Light Irradiation -- 7.3.2 Geometry of Photoreactor -- 7.3.3 Light Source Placement and Distribution -- 7.3.4 Photoreactor Materials -- 7.4 Types of Photoreactors -- 7.4.1 Slurry Photoreactors -- 7.4.2 Photocatalytic Membrane Photoreactors -- 7.4.3 Rotating Drum Photoreactors -- 7.4.4 Microphotoreactors -- 7.4.5 Annular Photoreactor (APR) -- 7.4.6 Closed-Loop Step Photoreactors -- 7.5 Photocatalytic Water Purification Using Photoreactors -- 7.6 Challenges for Effective Photoreactors -- 7.7 Conclusion -- References -- Chapter 8 Design of Photoreactors for Effective Dye Degradation -- Abbreviations -- 8.1 Introduction -- 8.1.1 Mechanisms and Theory of AOP -- 8.1.2 Design of Photoreactors -- 8.1.2.1 Source of Irradiation -- 8.1.2.2 Wavelength/Lamp Selection -- 8.1.3 Placement of Light Source and Light Distribution -- 8.2 Different Photoreactors Are Used for Wastewater Treatment -- 8.2.1 Some Typical Photoreactors Used for Wastewater Treatment Are Described Below -- 8.2.2 Homogenous and Heterogenous Systems -- 8.2.3 Heterogenous Photocatalyst Arrangement -- 8.2.4 Amount of Photocatalyst -- 8.3 Photoreactors Designed to Work Under Visible-Light Irradiation Toward Wastewater Treatment -- 8.3.1 Limitations of the Currently Employed Photoreactors and Future Scope -- 8.4 Current and Future Developments -- References -- Chapter 9 Simulation of Photocatalytic Reactors -- Abbreviations -- 9.1 Introduction -- 9.2 Modeling of Light Distribution -- 9.2.1 Light Distribution -- 9.2.2 Light Distribution Methods -- 9.2.3 Simulation Parameters -- 9.2.4 Influence of Bubbles on Light Distribution -- 9.2.5 Validation of Light Distribution Models -- 9.3 Photocatalysis Kinetics. , 9.4 Conclusion -- References -- Chapter 10 The Development of Self-Powered Nanoelectrocatalytic Reactor for Simultaneous Piezo-Catalytic Degradation of Bacteria and Organic Dyes in Wastewater -- Abbreviations -- 10.1 Introduction -- 10.2 Degradation Techniques -- 10.2.1 Electrochemical Advanced Oxidation Processes (EAOPs) -- 10.3 Characteristics and Properties of Piezoelectric Materials -- 10.3.1 Natural Piezoelectric Materials -- 10.3.2 Synthetic Piezoelectric Materials -- 10.4 Synthesis of Piezoelectric Materials -- 10.4.1 Electrospinning Technique -- 10.4.2 Template Synthesis -- 10.4.3 Mixed Metal Oxide (MMO)/Solid State Synthesis -- 10.4.4 Hydrothermal/Solvothermal Method -- 10.4.5 Sol-Gel Method -- 10.5 Challenges of Piezoelectric Nanomaterials/Nanogenerators -- 10.6 Application of Piezoelectric Materials for Piezo-Electrocatalytic Degradation of Dyes and Bacteria in Wastewater -- 10.6.1 Piezo-Electrocatalytic Degradation of Organic Dyes and Bacteria in Wastewater -- 10.7 Conclusion and Future Perspectives -- Acknowledgments -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Metals. ; Oxygen. ; Electronic books.
    Description / Table of Contents: This essential resource covers the entire spectrum of metal-air batteries, their working principles, recent advancement, and future perspectives. Chapters address materials design, electrochemistry, and architectural aspects. This will be used by a wide range of readers including those in academia and industries worldwide.
    Type of Medium: Online Resource
    Pages: 1 online resource (393 pages)
    Edition: 1st ed.
    ISBN: 9781000856088
    DDC: 577.6427530971274
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Milton :Jenny Stanford Publishing,
    Keywords: Electronic books.
    Description / Table of Contents: This book focuses on the advances in terahertz source technologies both from photonics and electronics (solid-state and vacuum-state) points of view.
    Type of Medium: Online Resource
    Pages: 1 online resource (773 pages)
    Edition: 1st ed.
    ISBN: 9781000995459
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Part I: THz Photonic Sources -- Chapter 1: THz Optical Parametric Generators and Oscillators -- 1.1: Injection-Seeded THz-Wave Parametric Generation Pumped by Subnanosecond Near-Infrared Pulses -- 1.2: Highly Efficient THz-Wave Parametric Wavelength Conversion between Near-Infrared Light and THz Waves -- 1.3: Multi-Wavelength THz Parametric Generator -- 1.4: Rapidly Wavelength-Switchable THz Parametric Generator -- 1.5: Backward THz-Wave Parametric Oscillation -- Chapter 2: Terahertz Wave Emission with Photoconductive Antennas -- 2.1: Operation Principles of Photoconductive Antennas -- 2.2: Design Considerations of Photoconductive Antennas -- 2.2.1: Photoconductive Material -- 2.2.2: Antenna Structure -- 2.2.3: Pump Laser -- 2.2.4: Sub-bandgap excitation of LT-GaAs-based Photoconductive antennas -- 2.3: Plasmonics-Enhanced Photoconductive Antennas -- 2.3.1: PCAs Based on Plasmonic Light Concentrators -- 2.3.2: PCAs Based on Plasmonic Contact Electrodes -- 2.3.3: PCAs Based on Plasmonic Nanoantenna Arrays -- 2.3.4: PCAs Based on Plasmonic Nanocavities -- 2.4: Conclusion and Outlook -- Chapter 3: Optical Rectification-Based Sources -- 3.1: Phase Matching, Velocity Matching, Tilted Pulse Front -- 3.2: Semiconductor-Based Sources -- 3.2.1: Contact Grating -- 3.2.2: Multiphoton Absorption -- 3.3: Organic Crystal-Based Sources -- 3.4: Lithium Niobate-Based Sources -- 3.4.1: Limitations of TPF -- 3.4.2: New Designs -- 3.5: Dispersion of Refractive Index, Absorption and Nonlinear Coefficient -- 3.6: Models for THz Generation -- 3.7: Summary -- Chapter 4: Method of Terahertz Liquid Photonics -- 4.1: Background -- 4.2: Liquid for THz Source -- 4.3: THz Wave Emission under Single-Color Optical Excitation in a Thin Water Film. , 4.4: THz Wave Emission under the Excitation of Asymmetric Optical Fields -- 4.5: THz Emission from Waterlines -- 4.6: Summary of Results of THz Wave Generation from Liquid Water -- 4.6.1: Key Observations -- 4.6.2: Other Confirmations -- 4.7: THz Wave Generation from Liquid Metal -- 4.8: THz Wave Generation from Liquids with Nanoparticles -- 4.9: THz Wave Emission from Liquid Nitrogen -- 4.10: Density Singularity of Water at 4°C -- 4.11: Molecular Orientation and Alignment -- 4.12: Magnetic Fluids -- 4.13: Future Perspective -- 4.14: Summary -- Chapter 5: Photomixing THz Sources -- 5.1: Generation of CW THz Radiation Using Photomixing -- 5.1.1: Devices for Photomixing THz Sources and THz Radiation Powers -- 5.1.2: Generation of THz Radiation Using Superposed Two Single-Mode Laser Beams (Two-Beam Photomixing) -- 5.1.3: Generation of THz Radiation by Photomixing Using a Dual-Mode Laser -- 5.1.4: Generation of THz Radiation by Photomixing Using a Multimode Laser -- 5.2: Photomixing THz Sources Combined with Coherent Detection -- 5.2.1: Coherent Detection System Using Superposed Two Single-Mode Laser Beams -- 5.2.2: Cross-Correlation Spectroscopic System (CCS) -- 5.3: Stable CW THz Wave Generation and Detection Using Laser Chaos -- 5.3.1: Laser Chaos -- 5.3.1.1: Time evolution of variables -- 5.3.1.2: Classification of lasers -- 5.3.1.3: Effects of delayed feedback -- 5.3.2: Application of Laser Chaos to Generation of THz Radiations -- 5.3.2.1: Merits of LDs as an irradiation source for THz radiation generation -- 5.3.2.2: Optical spectra of laser chaos -- 5.3.2.3: Generated THz waves -- 5.3.2.4: Simple stabilization mechanism -- 5.3.2.5: Stability of optical beats in laser chaos -- 5.3.3: Further Challenges -- Chapter 6: Spintronic THz Emitters -- 6.1: Introduction -- 6.2: Spin-to-Charge Conversion Mechanism Responsible for THz Radiation. , 6.3: Experimental Detection of THz Emission -- 6.4: Strategies to Engineer Intensity and Bandwidth of THz Signal -- 6.4.1: Material Dependence -- 6.4.2: Thickness Dependence -- 6.4.3: Wavelength Dependence -- 6.4.4: Interface Dependence -- 6.4.5: Stack Geometry Dependence -- 6.5: Future Perspectives of THz STEs -- 6.6: Conclusion -- Chapter 7: Terahertz Frequency Comb -- 7.1: Introduction -- 7.2: Coherent Link of Frequency Using Frequency Comb -- 7.3: THz-Comb-Referenced Spectrum Analyzer -- 7.4: Optical-Comb-Referenced Frequency Synthesizer -- 7.5: Dual-THz-Comb Spectroscopy -- 7.6: Conclusions and Future Trends -- Part II: THz Solid-State Electronic Sources -- Chapter 8: High-Efficiency THz Oscillators -- 8.1: Introduction -- 8.1.1: Fundamental Oscillators -- 8.1.2: Harmonic Oscillators -- 8.2: Challenges -- 8.3: Design and Optimization Flow -- 8.4: Design Example -- 8.4.1: Optimization Target -- 8.4.2: Core Transistor Optimization -- 8.4.3: Transformer-Based Impedance Optimization -- 8.5: Conclusion -- Chapter 9: Resonant Tunneling Diode (RTD) THz Sources -- 9.1: Introduction -- 9.2: Characteristics of RTD Oscillators -- 9.2.1: Structure and Oscillation Principle -- 9.2.2: Toward High-Frequency and High-Power Oscillation -- 9.2.3: Functionality -- 9.3: Applications of RTD Oscillators -- 9.3.1: Wireless Communication -- 9.3.2: Imaging and Radar -- 9.3.3: Analytics -- 9.4: Summary -- Chapter 10: Plasmon-Based THz Oscillators -- 10.1: Introduction -- 10.2: Theory -- 10.2.1: Hydrodynamics of 2D Plasmons -- 10.2.2: Dyakonov-Shur Doppler-Shift-Type Instability -- 10.2.3: Ryzhii-Satou-Shur Electron-Transit-Type Instability -- 10.2.4: Cherenkov Plasmonic-Boom-Type Instability -- 10.2.5: Coupling between Plasmons and Photons -- 10.3: Experiments -- 10.3.1: AlGaN/GaN Single-Gate HEMT -- 10.3.2: InGaAs/InAlAs/InP Dual-Grating-Gate HEMT. , 10.3.3: Graphene-Channel Dual-Grating-Gate FET -- 10.4: Future Subjects and Prospects -- 10.5: Conclusion -- Chapter 11: Beamforming THz Transmitters -- 11.1: Introduction -- 11.2: THz Phase Shifters -- 11.2.1: Reflective-Type Phase Shifters (RTPS) -- 11.2.2: Switched-Type Phase Shifters (STPS) -- 11.2.3: Vector-Sum Phase Shifters (VSPS) -- 11.3: Integrated Beamforming THz Transmitters -- 11.3.1: 280 GHz CMOS Beamforming Array on Distributed Active Radiators -- 11.3.2: 320 GHz BiCMOS Beamforming Transmitter -- 11.3.3: 370-410 GHz CMOS Beamforming Transmitter -- Chapter 12: Solid-State THz Power Amplifiers -- 12.1: Introduction -- 12.2: THz Power Amplifier Fundamentals -- 12.2.1: Unit Cell Design -- 12.2.2: Power Combining Techniques -- 12.2.3: Power Supply Oscillations and Heat Effect -- 12.2.4: Technology Considerations -- 12.3: Design Examples -- 12.3.1: 140 GHz Power Amplifier -- 12.3.1.1: Unit cell design -- 12.3.1.2: Combiner design -- 12.3.1.3: Measurement results -- 12.3.2: 210 GHz Power Amplifier -- 12.3.3: 270 GHz Power Amplifier -- 12.3.4: 600 GHz Power Amplifier -- 12.3.4.1: Unit gain stage -- 12.3.4.2: Differential gain block -- 12.3.4.3: Measurement results -- Chapter 13: Terahertz Silicon On-Chip Antenna -- 13.1: Introduction -- 13.2: Si IC Technologies for on-Chip Antenna -- 13.3: Topside Radiating Antenna with Frontside Ground -- 13.3.1: Antenna Structure and Design Considerations -- 13.3.2: Design Examples -- 13.3.2.1: On-chip patch antenna -- 13.3.2.2: Slot antenna -- 13.3.2.3: Antenna with AMC -- 13.4: Topside Radiating Antenna with Backside Ground -- 13.4.1: Antenna Structure and Design Considerations -- 13.4.2: Design Examples -- 13.4.2.1: Slot-ring antenna -- 13.4.2.2: Dipole antenna -- 13.4.2.3: Patch antenna with DGS -- 13.4.2.4: Comb-shaped dipole with chip-integrated dielectric resonator. , 13.5: Backside Radiating on-Chip Antenna -- 13.5.1: Antenna Structure and Design Considerations -- 13.5.2: Design Examples -- 13.5.2.1: Backside radiating antenna with a lens -- 13.5.2.2: Backside radiating antenna without lens -- 13.6: Design Rules Related to Antenna Design -- Chapter 14: Package Technologies for THz Devices -- 14.1: Introduction -- 14.2: Issues in Package at THz Frequencies -- 14.2.1: Packaging Materials -- 14.2.2: Interconnections -- 14.2.3: Signal Interfaces -- 14.3: Metallic Waveguide Packages -- 14.4: LTCC Packages at THz Frequencies -- 14.5: Concept of Quasi-Optical THz Package -- Chapter 15: Semiconductor Technologies for THz Applications -- 15.1: Si CMOS Technology -- 15.1.1: Device Operation -- 15.1.2: Structural Variations -- 15.1.2.1: SOI MOSFET -- 15.1.2.2: FinFET and GAA FET -- 15.1.3: Performance Trend -- 15.2: SiGe HBT Technology -- 15.2.1: Device Operation -- 15.2.2: Performance Trend -- 15.3: III-V HEMT Technology -- 15.3.1: Device Operation -- 15.3.2: Performance Trend -- 15.4: III-V HBT Technology -- 15.4.1: Device Operation -- 15.4.2: Performance Trend -- Part III: THz Vacuum Electronic Sources -- Chapter 16: Development and Applications of THz Gyrotrons -- 16.1: Introduction -- 16.2: Development of THz Gyrotrons -- 16.3: THz Gyrotrons: New Concepts, Challenges, and Trends in Their Development -- 16.4: Some of the Most Prominent Applications of THz Gyrotrons -- 16.4.1: Controlled Thermonuclear Fusion -- 16.4.2: Materials Treatment -- 16.4.3: Advanced Spectroscopic Techniques -- 16.4.3.1: DNP-NMR spectroscopy -- 16.4.3.2: ESR spectroscopy -- 16.4.3.3: XDMR spectroscopy -- 16.4.3.4: Measuring the energy levels of positronium -- 16.4.3.5: Radioacoustic spectroscopy using gyrotron radiation -- 16.4.4: Plasma Physics and Localized Gas Discharges -- 16.4.5: Electron Cyclotron Resonance Ion Sources. , 16.4.6: Applications in Bioscience and Material Science Areas.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Electronic books.
    Description / Table of Contents: This book is a comprehensive guide to producing medical software for routine clinical use.
    Type of Medium: Online Resource
    Pages: 1 online resource (291 pages)
    Edition: 1st ed.
    ISBN: 9781040002353
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Milton :Jenny Stanford Publishing,
    Keywords: Electronic books.
    Description / Table of Contents: This book is the first of its kind to present the engineering aspects of medical vision ophthalmology. It showcases an array of amazing systems and devices involving biomimetic microrobotics and artificial muscles.
    Type of Medium: Online Resource
    Pages: 1 online resource (688 pages)
    Edition: 1st ed.
    ISBN: 9781003847427
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Table of Contents -- Preface -- Chapter 1: Introduction to Ophthalmology -- Introduction -- Diseases -- Diagnosis -- Chapter 2: Vision Fundamentals -- Parts of the Eye That Aid in Vision -- Conditions and Disorders -- Keeping the Vision Healthy -- Frequently Asked Questions -- Eye Anatomy -- How Do We See? -- Eye Conditions -- Eye Tests -- Eye Treatments -- Chapter 3: Intraocular Robotic Surgical System -- Introduction to Ophthalmic Surgery -- Robot-Assisted Intraocular Surgery -- Proposed Robotic Surgical System for Use in Ophthalmology -- Chapter 4: Surgical Correction of Human Eye Refractive Errors by Active Composite Artificial Muscle Implants -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Description of the Preferred Embodiments -- What Are Designed and Developed ? -- Chapter 5: Implantable Micropump Assembly -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Detailed Description of the Preferred Embodiments -- New Devices -- Chapter 6: Diaphragm Pump Apparatuses Based on Synthetic Muscles -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Detailed Description of the Preferred Embodiments -- Proposed Assemblies -- Chapter 7: Accommodating Zonular Mini-Bridge Implants -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Description of the Preferred Embodiments -- Designed Assemblies -- Chapter 8: Surgical Correction of Human Eye Refractive Errors by Active Composite Artificial Muscle Implants -- Cross-Reference to Related Applications -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Description of the Preferred Embodiments -- Discoveries. , Chapter 9: Surgical Correction of Ptosis by Polymeric Artificial Muscles -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Detailed Description of the Chapter -- Designed Assemblies -- Chapter 10: Synthetic Muscle-Based Multi-Powered Active Contact Lens -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Detailed Description of the Chapter -- Detailed Description of Figures -- What Are Designed Assemblies? -- Chapter 11: System and Device for Correcting Hyperopia and Presbyopia -- Technical Field -- Background of the Related Art -- Summary of the Present Chapter -- Detailed Description of the Example Embodiments -- Discoveries -- Chapter 12: Surgical Correction of Ptosis by Polymeric Artificial Muscles: Recent Advances -- Cross-Reference to Related Applications -- Technical Field -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Detailed Description of the Chapter and Figures -- What Are Designed and Developed? -- Chapter 13: Double-Accommodating Intraocular Accordion Lens -- Background of the Chapter -- Background Art -- Summary of the Chapter -- Brief Description of the Drawings -- Description of the Preferred Embodiments -- Discoveries -- Chapter 14: System and Device for Correcting Hyperopia, Myopia, and Presbyopia -- Cross Reference to Related Applications -- Technical Field -- Background -- Summary of the Chapter -- Detailed Description of Designed and Developed Embodiments, and Figures -- Discoveries -- Chapter 15: Surgical Correction of Human Eye Refractive Errors by Active Composite Artificial Muscle Implants -- Cross-Reference to Related Applications -- Background of the Chapter -- Background Art -- Summary of the Chapter -- Brief Description of the Drawings -- Description of the Preferred Embodiments. , Designed and Developed Embodiments -- Chapter 16: Nitric Oxide Donor + cGMP-PDE5 Inhibitor as a Topical Drug for Glaucoma -- Background of Chapter -- Summary of Chapter -- Detailed Description -- Discoveries -- Chapter 17: Surgical Correction of Ptosis by Polymeric Artificial Muscles -- Cross-Reference to Related Application -- Technical Field -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Detailed Description of the Chapter -- Designed and Developed Embodiments -- Chapter 18: System and Device for Correcting Hyperopia and Presbyopia -- Technical Field -- Background and History of the Related Art -- Summary of the Chapter -- Detailed Description of the Example Embodiments -- Designed and Developed Embodiments -- Chapter 19: Synthetic Muscle-Based Multi-Powered Active Contact Lens -- Technical Field -- Background of the Chapter -- Summary of the Chapter -- Brief Description of the Drawings -- Detailed Description of the Chapter -- Detailed Explanation of Figures -- Designed and Developed Embodiments -- Chapter 20: Implantable Pump Apparatuses -- Cross Reference to Related Applications -- Background of the Chapter -- Description of the Prior Art -- Summary of the Chapter -- Brief Description of the Drawings -- Detailed Description of the Preferred Embodiments -- Designed and Developed Embodiments -- Chapter 21: Heat-Shrink Scleral Band with Custom-Made Buckle for Retinal Detachment Surgery -- Background of the Embodiment -- Summary of Concept -- Detailed Description -- Designed and Developed Embodiments -- Chapter 22: System and Devices for Correcting Hyperopia and Presbyopia -- Technical Field -- Background and History of Related Art -- Summary of the Present Innovation -- Detailed Description of Example Embodiments -- Designed and Developed Embodiments. , Chapter 23: Surgical Correction of Ptosis by Polymeric Artificial Muscles: Recent Advances -- Cross-Reference to Related Application -- Technical Field -- Background of the Innovation -- Summary of the Innovation -- Brief Description of the Drawings -- Detailed Description of the Innovation and Figures -- Designed and Developed Innovations -- Chapter 24: Double-Accommodating Intraocular Accordion Lens -- Background of the Invention -- Summary of the Innovation -- Brief Description of the Drawings -- Description of the Preferred Embodiments -- Designed and Developed Innovations -- Ophthalmological Patents -- 12C-Patents, Patent Applications, Publications, and Patents Pending -- Index -- Book Review.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (248 pages)
    Edition: 1st ed.
    ISBN: 9780443136542
    Language: English
    Note: Front Cover -- Series Page -- Title Page -- Copyright -- Contents -- Contributors -- Epigenetic regulation of cancer -- Acknowledgments -- Competing interests -- References -- Chapter One: Epigenetic therapeutic strategies in pancreatic cancerEpigenetic therapeutic strategies in pancreatic cancer -- 1 Introduction -- 1.1 Epigenetic profiling of PDAC subtypes and therapeutic opportunities for subtype switching -- 2 Epigenetic changes in the PDAC tumor microenvironment and therapeutic implications -- 3 Epigenetic markers for PDAC diagnosis and prognosis -- 4 Epigenetic alterations in pancreatic cancer metastasis -- 5 Conclusions -- References -- Further reading -- Chapter Two: Genetic and epigenetic features of neuroendocrine prostate cancer and their emerging applicationsGenetic and epigenetic featu -- 1 Introduction -- 2 NEPC development as a mechanism of treatment resistance -- 3 Current approach to NEPC diagnosis and management -- 4 Genetic and epigenetic landscape of NEPC -- 4.1 Genetic mutations in NEPC -- 4.2 Epigenetic alterations in NEPC -- 4.2.1 Aberrant DNA methylation patterning in NEPC -- 4.2.2 Post-translational histone modification in NEPC -- 4.2.3 Expression of non-coding RNAs in NEPC -- 5 Emerging treatment options in NEPC -- 6 Circulating tumour cells in NEPC -- 7 Conclusion -- Acknowledgements -- References -- Chapter Three: Epigenetic control of cell signalling in cancer stem cellsEpigenetic control of cell signalling in cancer stem cells -- 1 Introduction -- 2 Wnt/β-catenin signalling pathway -- 3 Hedgehog signalling pathway -- 4 Notch signalling pathway -- 5 TGFβ/BMP signalling pathway -- 6 Therapeutic interventions targeting epigenetic regulators in CSCs -- 7 Conclusion -- References -- Chapter Four: Epigenetic inhibitors for cancer treatmentEpigenetic inhibitors for cancer treatment -- 1 Introduction. , 2 The molecular cascade of epigenetic modifications (summarized as Fig. 1) -- 2.1 DNA modifications -- 2.2 RNA modifications -- 2.3 Histone modifications -- 2.4 Non-coding RNAs -- 2.5 Other epigenetic regulations -- 3 The role of epigenetic regulation in cancers -- 3.1 Cancer progression -- 3.2 Cancer metastasis -- 3.3 Resistance to therapeutics -- 4 Current development of epigenetic inhibitors for cancer treatment -- 4.1 First generation -- 4.2 Second generation -- 4.3 Third generation -- 4.4 Fourth generation -- 5 Discussion -- 5.1 State-of-quo in the clinical trials -- 5.2 New strategy in the clinical use of epigenetic inhibitors in cancer: Combination therapy -- 5.3 New strategy in the development of novel epigenetic inhibitors for cancer treatment -- 6 Conclusion -- References -- Chapter Five: Epigenetics as a determinant of radiation response in cancerEpigenetics as a determinant of radiation response in cancer -- 1 Introduction -- 2 Epigenetic code -- 3 DNA methylation -- 4 Histone modifications and chromatin remodeling -- 5 RNA methylation -- 6 Radiotherapy resistance pathways and epigenetic mechanisms in cancer -- 6.1 DNA repair and cell cycle -- 6.2 Cell survival pathways -- 6.3 Epigenetics regulation of cell death induced by radiotherapy -- 7 Cancer stem cells -- 8 Tumor microenvironment and radioresistance -- 9 Epigenetic mechanisms in tumor immunology and radiation resistance -- 10 Stroma cells and tumor communication -- 11 Conclusion and future perspectives -- Acknowledgments -- References -- Chapter Six: Epigenome editing in cancer: Advances and challenges for potential therapeutic options -- 1 Introduction -- 2 Dysregulation of epigenetic components in cancer -- 2.1 DNA methyltransferases (DNMTs) and ten-eleven translocation (TET) methylcytosine dioxygenases in cancer. , 2.2 Histone methyltransferases (HMTs) and histone demethylases in cancer -- 2.3 Histone acetyltransferases (HATs) and histone deacetylases (HDACs) in cancer -- 2.4 Long noncoding RNAs (lncRNAs) in cancer -- 2.5 Pioneer factors in cancer -- 2.6 Chromatin architecture in cancer -- 3 Technology modulating cancer epigenomes -- 3.1 Gene-level editing tools -- 3.2 Transcriptional level editing tools -- 3.2.1 CRISPR interference (CRISPRi) and CRISPR-mediated gene activation -- 3.2.2 RNA interference (RNAi) -- 3.2.2.1 siRNA -- 3.2.2.2 Micro RNA (miRNA) -- 3.2.2.3 short hairpin or small hairpin RNA (shRNA) -- 3.3 Protein-level editing tools -- 3.3.1 Auxin-inducible degron (AID) -- 3.3.2 Proteolysis-targeting chimera molecules (PROTACs) -- 3.4 Small molecules targeting epigenomes -- 3.5 Cell-level editing tools (perspective) -- 3.5.1 Transdifferentiation/cellular reprogramming with pioneer factors -- 4 Challenges and future directions of current epigenome modulating tools for cancer therapeutic options -- 4.1 Small molecules, RNAi, and PROTACs -- 4.2 Gene targeting such as CRISPR-Cas9, CRISPRi or CRISPRa -- 4.3 Targeting pioneer factors and transdifferentiation through master TFs -- 5 Closing remarks -- Funding -- References -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Newark :John Wiley & Sons, Incorporated,
    Keywords: Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (205 pages)
    Edition: 1st ed.
    ISBN: 9781394275809
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Introduction -- Chapter 1. The Environmental Impact of the Contemporary Economic Model -- 1.1. The negative effects of the economic model on the environment -- 1.1.1. Disasters of economic activity accelerated by the First Industrial Revolution -- 1.1.2. Questions about the capitalist system -- 1.2. A society that pollutes -- 1.2.1. Waste: elements of definition -- 1.2.2. Pollution in the world: an inevitable growth? -- 1.2.3. Public policies to reduce pollution -- 1.3. A sustainable economic model? -- 1.3.1. The sustainability approach -- 1.3.2. Ecological footprint -- 1.4. Conclusion -- Chapter 2. Eco-design: Definitions and Theoretical Outlines -- 2.1. Eco-design: a plural concept -- 2.1.1. The pioneers of eco-design -- 2.1.2. Technocentric eco-design -- 2.1.3. Sustainable design -- 2.2. Technocentric eco-design: a dominant approach -- 2.2.1. The diversity of available methods -- 2.2.2. The most commonly used method: life cycle analysis -- 2.2.3. Some examples of technocentric eco-design -- 2.3. The contribution of eco-design to environmental innovations -- 2.3.1. Innovation, environmental innovation and sustainable innovation -- 2.3.2. The circular economy and the functional economy: practices that are sources of environmental innovations -- 2.3.3. Frugal innovation: a form of sustainable design -- 2.4. Conclusion -- Chapter 3. Eco-design in Companies: Practices and Decisive Actions -- 3.1. A systemic approach to innovation -- 3.1.1. Socio-technical systems -- 3.1.2. Institutions -- 3.2. Eco-design in socio-technical systems -- 3.2.1. The elements of the system -- 3.2.2. The relationships between the elements of the socio-technical systems -- 3.2.3. Coordination by institutions -- 3.3. Visible aspects of eco-design practices in socio-technical systems. , 3.3.1. The economic results of companies: is it essential to "get" eco-design approaches accepted? -- 3.3.2. Communication: a tool to support the diffusion of eco-design practices -- 3.4. Conclusion -- Chapter 4. Questions and Perspectives on Eco-design -- 4.1. Technocentric eco-design: an insufficient solution to the ecological transition -- 4.1.1. The difficulty of leaving the dominant socio-technical regime -- 4.1.2. Limitations due to eco-efficiency and the rebound effect -- 4.2. The contribution of eco-design to the circular economy -- 4.2.1. Circular economy business models and the diffusion of eco-design -- 4.2.2. Technocentric eco-design and the circular economy: complementary approaches -- 4.2.3. Circular economy business models and relationships between actors in socio-technical systems -- 4.2.4. The limits of the circular economy -- 4.3. The solutions enabled by sustainable design in the ecological transition perspective -- 4.3.1. New possible uses for a new relationship between the human species and its environment -- 4.3.2. The advantages of frugal innovation -- 4.4. Perspectives -- 4.4.1. Going further by involving stakeholders in innovation -- 4.4.2. Considering the environment as a common good -- 4.4.3. Profound changes are needed in the socio-technical systems -- 4.5. Conclusion -- Conclusion -- References -- Index -- EULA.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Electronic books.
    Description / Table of Contents: This edited volume from Japan's Research Subcommittee on How to Handle Ground Materials in Hydraulic Model Tests presents readers with a state-of-the-art overview of experimental and computational methods used to address similarity scaling incompatibilities present in fluid-sediment flows.
    Type of Medium: Online Resource
    Pages: 1 online resource (251 pages)
    Edition: 1st ed.
    ISBN: 9781003814719
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Contents -- Publication -- Members List of Research Subcommittee on Methodology for Dealing with Geomaterials in Hydraulic Model Experiments -- List of Contributors -- 1. Introduction -- 2. Methodology of Model Tests -- 2.1. Purpose of Model Tests -- 2.2. Hydraulic Model Test -- 2.2.1. Model Test Plan -- 2.2.2. Classification and Target of Model Tests -- 2.2.3. Target and Method of Measurement -- 2.2.4. Model Test Procedure -- 2.2.5. Typical Examples of Hydraulic Model Tests -- 2.3. Geotechnical Model Test -- 2.3.1. Planning of Model Test -- 2.3.2. Classification and Target of Model Tests -- 2.3.3. Target and Method of Measurement -- 2.3.4. Model Test Procedure -- 2.3.5. Typical Model Test Example -- 2.4. Review on the Handling of Geomaterials and Organization of Issues in Japan (Published in Japanese) -- 2.4.1. Examples of Past Experiments Dealing with a Movable Bed in Hydraulic Model Tests -- 2.4.2. Extraction and Organization of Issues Related to the Handling of Geomaterials in Hydraulic Model Experiments -- References -- 3. Concept of the Law of Similarity in Model Tests -- 3.1. Role of Law of Similarity -- 3.1.1. Law of Similarity -- 3.1.2. History of Law of Similarity -- 3.2. Law of Similarity for Fluids -- 3.2.1. Derivation of Law of Similarity -- 3.2.2. Model Tests Involving Breaking Waves -- 3.2.3. Model Tests in Earth's Gravity Field -- 3.2.4. Model Tests in Centrifugal Gravity Field -- 3.2.5. Model Tests on Fluid-Structure Interaction -- 3.3. Law of Similarity for Ground -- 3.3.1. Derivation of the Law of Similarity -- 3.3.2. Model Tests in Earth's Gravitational Field -- 3.3.3. Model Tests in Centrifugal Gravity Field -- 3.3.4. Model Tests on Soil-Structure Interaction -- 3.3.5. Law of Similarity for Unsaturated Ground. , 3.4. Law of Similarity in Combined Fluid and Ground Model Tests -- 3.4.1. Sand Drift -- 3.4.2. Seabed Topography Changes -- 3.4.3. Scouring Phenomenon below Permeable Structure -- 3.4.4. Combined Wave and Ground Model Test -- References -- 4. Case Study of Model Experiments -- 4.1. Viewpoint Concerning the Case Study -- 4.2. Case (1) Scouring Phenomenon under Wave-dissipating Blocks -- 4.2.1. Subsidence Phenomena of Wave-dissipating Blocks -- 4.2.2. Method of Reproducing Scouring Phenomenon with Small-to-Medium-Scale Model Experiments -- 4.2.3. Mechanism of Subsidence of Blocks Based on a Large-scale Experiment (1/16 Scale of the Site) -- 4.2.4. Reproduction of Subsidence of Blocks by Super-large-scale Experiment (1/4 Scale of the Site) -- 4.2.5. Small-to-medium-scale Model Experiment (1/14 of Super-large-scale Experiment and 1/55.8. of the Site): Institution A -- 4.2.6. Small-to-medium-scale Model Experiment (1/14 of Super-large-scale Experiment and 1/55.8. of the Site): Institution B -- 4.2.7. Small-to-medium-scale Model Experiment (1/25 of Super-large-scale Experiment and 1/100 of the Site): Institution C -- 4.2.8. Centrifuge Model Tests (1/38 of Super-large-scale Experiment and 1/152 of the Site): Institution D -- 4.2.9. Dean's Law (Dean Number) and Results of Experiments of Each Scale -- 4.2.10. Conclusion -- 4.3. Case (2) Erosion of Beach Nourishment Filling -- 4.3.1. Introduction -- 4.3.2. Existing Knowledge Regarding Recession Mechanism of Sand Dune and Beach Scarp -- 4.3.3. Test Method -- 4.3.4. Test Result -- 4.3.5. Comparison between the Test Result and the Actual Phenomenon -- 4.3.6. Conclusion -- References -- 5. Numerical Calculation Methodology for Wave-Seabed Interaction -- 5.1. Role of Numerical Calculation -- 5.2. Development of Numerical Calculation for Wave-Seabed Interaction -- 5.2.1. Grid Method -- 5.2.2. Particle Method. , 5.2.3. Coupling of Grid Method and Particle Method -- 5.3. Treatment of Interface between Fluid and Porous Domains -- 5.3.1. Role of Interfacial Condition -- 5.3.2. Examples of Numerical Analyses -- 5.4. Bottom Sediment Transport by Particle Method -- 5.4.1. Multiphase Flow Analysis -- 5.4.2. Example of Numerical Analysis -- 5.4.3. Conclusion -- 5.5. Wave-induced Seabed Response by Grid Method -- 5.5.1. Wave Model -- 5.5.2. Seabed Model -- 5.5.3. Coupling of Wave Model and Seabed Model -- 5.5.4. Examples of Numerical Analysis -- References -- 6. Future Challenges -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Biomedical materials. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (486 pages)
    Edition: 1st ed.
    ISBN: 9780081004999
    Language: English
    Note: Front Cover -- Hemocompatibility of Biomaterials for Clinical Applications: Blood-Biomaterials Interactions -- Copyright -- Contents -- Contributors -- Part One: Fundamentals and testing methods for the hemocompatiblity of biomaterials -- 1: Contact activation by the intrinsic pathway of blood plasma coagulation -- 1.1 Introduction -- 1.2 Structural analysis of FXII -- 1.3 Contact activation of blood plasma -- 1.4 Contact activation of FXII in neat-buffer -- 1.4.1 Autoactivation of FXII is a sharp function of solid activator surface energy -- 1.4.2 Surface area dependence of FXII autoactivation -- 1.4.3 Influences of surface charge on FXII autoactivation -- 1.4.4 Relative yields of FXII-derived products in terms of surface energy and surface area -- 1.4.5 Current understanding on molecular events occurring during FXII contact activation -- 1.5 Influences of plasma proteins on FXII autoactivation -- 1.5.1 Effects on FXII autoactivation by plasma proteins not directly related to intrinsic pathway -- 1.5.2 Kallikrein-mediated amplification of FXIIa from surface induced activation -- 1.6 Role of platelets in FXII contact activation -- 1.7 Summary and future perspectives -- References -- 2: Mechanisms of blood coagulation in response to biomaterials: Extrinsic factors -- 2.1 Introduction -- 2.2 The blood coagulation cascade and physiological inhibitors -- 2.2.1 The extrinsic clotting pathway -- 2.2.2 The intrinsic (contact) clotting pathway -- 2.2.3 Newly identified prothrombotic biomolecules -- 2.2.3.1 Polyphosphate and cell-free nucleic acids -- 2.2.4 Physiological inhibition of blood clotting -- 2.3 Mechanisms by which clinically used biomaterials induce blood clotting (thrombosis) -- 2.3.1 Role of blood cells and proteins on biomaterial surfaces -- 2.3.1.1 Impact of protein adsorption. , 2.3.1.2 Adhesion and activation of platelets -- 2.3.1.3 Role of endothelium -- 2.3.2 Activation of the complement system -- 2.4 Summary and concluding remarks -- Acknowledgments -- References -- 3: Developing standards and test protocols for testing the hemocompatibility of biomaterials -- 3.1 Introduction -- 3.2 Requirements for a reproducible and standardized in vitro testing -- 3.2.1 Preparation of materials for in vitro testing -- 3.2.2 Reference materials -- 3.2.3 Anticoagulation -- 3.2.4 Donor selection and stratification -- 3.2.5 Blood collection, preparation, and storage -- 3.3 Test protocols -- 3.3.1 Thrombogenicity -- 3.3.2 Hemocompatibility -- 3.4 Summary -- References -- 4: Test methods for hemocompatibility of biomaterials -- 4.1 Introduction -- 4.2 Incubation of whole blood versus blood fractions -- 4.2.1 Use of different blood fractions for testing -- 4.2.2 Requirements for valid incubation results with whole blood -- 4.2.3 Blood anticoagulation -- 4.3 Incubation settings -- 4.3.1 Duration of incubation -- 4.3.2 Reference materials -- 4.3.3 Incubation settings-Overview -- 4.3.4 Incubation systems with stagnant blood -- 4.3.5 Closed, agitated systems for incubation -- 4.3.6 Incubation with streaming blood -- 4.3.6.1 Chandler loop -- 4.3.6.2 Parallel plate flow chambers -- 4.3.6.3 Cone-plate-incubation -- 4.3.6.4 Model miniature hemodialyzer -- 4.4 Analytical parameters -- 4.4.1 Global parameters -- 4.4.1.1 Determination of clotting times of blood plasma -- 4.4.1.2 Thromboelastography -- 4.4.1.3 Thrombin formation -- 4.4.1.4 Microscopic and gravimetric analysis of blood clot formation -- 4.4.2 Humoral markers -- 4.4.3 Cellular activation -- 4.4.3.1 Platelets -- 4.4.3.2 Granulocytes/monocytes -- 4.5 Future trends and open problems -- References. , Part Two: Improving the hemocompatibility of biomaterial surfaces -- 5: Analyzing biomaterial surfaces and blood-surface interactions -- 5.1 Flow dynamics -- 5.2 Chandler's loop -- 5.3 Current design -- 5.4 Method and materials -- 5.4.1 Platelet rich plasma preparation -- 5.5 Static hemocompatibility experiment -- 5.6 Dynamic hemocompatibllity experiments -- 5.7 Summary -- References -- 6: Surface analysis technique for assessing hemocompatibility of biomaterials -- 6.1 Introduction -- 6.2 Biomaterials -- 6.3 Nano-biomaterials -- 6.3.1 Hemocompatibility or blood compatibility -- 6.3.2 Protein adsorption -- 6.3.3 Platelet activation and adhesion -- 6.3.4 Hemocompatibility test for various nano-biomaterials -- 6.3.4.1 Hemocompatibility test for nanoparticles -- 6.3.4.2 Hemocompatibility of nanofibers -- 6.3.4.3 Hemocompatibility of nanotubes -- 6.3.4.4 Hemocompatibility of nanofilms -- 6.4 Surface characterization of biomaterials -- 6.4.1 Surface characterization techniques -- 6.4.2 Ellipsometry -- 6.4.3 Characterization of the swelling behavior using in situ ellipsometry -- 6.4.4 Surface plasmon resonance -- 6.4.5 Quartz crystal microbalance -- 6.4.6 Comparison of the different techniques -- 6.5 Conclusion -- Acknowledgment -- References -- Further reading -- 7: Coatings for biomaterials to improve hemocompatibility -- 7.1 Introduction -- 7.2 Main -- 7.2.1 Physicochemical properties -- 7.2.1.1 Wettability -- 7.2.1.2 Specific surface functional groups -- 7.2.1.3 Roughness/topography -- 7.2.1.4 Other factors (air bubbles) -- 7.2.2 Inorganic passive coatings -- 7.2.2.1 Carbon-based inorganic coatings -- 7.2.2.2 Metal-oxides, metal-nitrides -- 7.2.3 Organic passive coatings -- 7.2.3.1 Hydrophilic coatings/polymer brushes -- 7.2.3.2 Zwitterionic materials -- 7.2.3.3 Passivating proteins -- 7.2.4 Bioactive coatings. , 7.2.4.1 Anticoagulants -- Indirect thrombin inhibitors: Heparin -- Direct thrombin inhibitors -- Hirudin and its derivatives -- Small synthetic inhibitors -- Thrombomodulin -- 7.2.4.2 Other pharmaceutics -- Antiplatelet agents -- Nitric oxide -- Antiproliferative agents -- Fibrinolytic agents -- 7.2.4.3 Gene elution -- 7.2.5 Coatings to promote endothelialization -- 7.3 Future trends -- 7.4 Conclusion -- Acknowledgment -- References -- 8: Techniques for modifying biomaterials to improve hemocompatibility -- 8.1 Introduction -- 8.2 Blood and its interactions with interfaces -- 8.3 Biomaterials modification techniques -- 8.3.1 Physical methods -- 8.3.2 Chemical methods -- 8.3.2.1 Methods that introduce functional groups -- 8.3.2.2 Methods that uses hemocompatible molecules: Physical immobilization approaches -- 8.3.2.3 Methods that use hemocompatible molecules: Covalent crosslinking approaches -- 8.3.3 Cellular methods -- 8.3.4 Other methods -- 8.4 Summary and future prospects -- Acknowledgments -- References -- Part Three: Improving the hemocompatibility of types of biomaterial -- 9: Improving the hemocompatibility of biomedical polymers -- 9.1 Prelude -- 9.2 Usage of blood-contacting devices -- 9.3 Biomaterial surface and blood interaction -- 9.3.1 Platelet activation -- 9.3.2 Complement activation -- 9.4 Biomaterial surface properties and their influence on coagulation -- 9.5 Surface anticoagulation approaches -- 9.5.1 Limitations of approaches -- 9.6 Current state of systemic anticoagulation usage -- 9.7 Keys to achieving totally local surface anticoagulation -- 9.8 Standardization of in vitro and in vivo test protocols -- 9.9 Highlights of promising anticoagulation works -- 9.10 Conclusion -- Acknowledgments -- References -- 10: Strategies to improve the hemocompatibility of biodegradable biomaterials. , 10.1 Introduction -- 10.2 Biomaterial hemocompatibility -- 10.3 Biodegradable polymeric materials -- 10.3.1 Natural polymers -- 10.3.1.1 Alginate -- 10.3.1.2 Chitosan -- 10.3.1.3 Hyaluronic acid -- 10.3.1.4 Silk -- 10.3.1.5 Collagen -- 10.3.2 Synthetic biodegradable polymers -- 10.3.2.1 Polyesters -- Polylactic acid -- Poly lactic-co-glycolide -- Polycaprolactone -- 10.3.2.2 Polyurethane -- 10.3.2.3 Poly (vinyl alcohol) -- 10.4 Hybrid biodegradable biomaterials -- 10.4.1 Substrate materials -- 10.4.1.1 Bioceramics -- Calcium phosphates -- Bioactive glass -- 10.4.2 Inorganic/organic (I/O) hybrid materials -- 10.4.2.1 Nanocomposite materials -- 10.4.3 Polymer hybrids -- 10.5 Hemocompatible surface coatings and modifications -- 10.5.1 Pharmaceutically active materials to improve hemocompatibility -- 10.5.1.1 Heparin and heparin-like molecules -- 10.5.1.2 Heparin binding peptides -- 10.5.1.3 Nitric oxide -- 10.6 Conclusion -- Acknowledgment -- References -- 11: Surface treatment of metallic biomaterials in contact with blood to enhance hemocompatibility -- 11.1 Multiscale interaction of blood and metals -- 11.1.1 Metallic materials used in biomedical devices -- 11.1.2 Immune response and metals -- 11.1.3 Biocorrosion -- 11.2 Evaluation of hemocompatibility of metallic systems -- 11.2.1 Hemo and biocompatibility evaluation of metallic systems -- 11.2.2 Regulation and safety aspects in metallic nanomaterials as biomaterials -- 11.3 Irradiation-driven synthesis and modification to improve the hemo-compatibility behavior of metallic systems -- 11.3.1 Surface properties to improve behavior between blood and metals -- 11.3.1.1 Cell-surface interactions -- 11.3.1.2 Surface free energy and the biointerface -- 11.3.2 Techniques to modify metallic surfaces -- 11.3.2.1 Mechanical modification -- 11.3.2.2 Electropolishing. , 11.3.2.3 Thermal and hydrothermal treatments.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...