GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (13)
  • Quantum theory-Mathematics.  (7)
  • Many-body problem.  (6)
  • English  (13)
  • Polish
  • Swedish
  • 530.12  (13)
  • 333.72
Document type
  • GEOMAR Catalogue / E-Books  (13)
Source
Language
  • English  (13)
  • Polish
  • Swedish
  • 1
    Online Resource
    Online Resource
    Dordrecht :Springer Netherlands,
    Keywords: Quantum theory-Mathematics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (280 pages)
    Edition: 1st ed.
    ISBN: 9780306476174
    Series Statement: Progress in Theoretical Chemistry and Physics Series ; v.9
    DDC: 530.12
    Language: English
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Green''s functions. ; Many-body problem. ; Electronic books.
    Description / Table of Contents: This research monograph provides a pedagogical and self-contained introduction to non-equilibrium quantum particle dynamics for inhomogeneous systems, up to and including a survey of recent breakthroughs pioneered by the authors and other groups.
    Type of Medium: Online Resource
    Pages: 1 online resource (135 pages)
    Edition: 1st ed.
    ISBN: 9783642350825
    Series Statement: Lecture Notes in Physics Series
    DDC: 530.12
    Language: English
    Note: Intro -- Nonequilibrium Green's Functions Approach to Inhomogeneous Systems -- Preface -- Acknowledgments -- Contents -- Acronyms -- Part I: Introduction -- Chapter 1: Quantum Many-Particle Systems out of Equilibrium -- 1.1 Overview on Computational Approaches -- 1.2 Many-Body Interactions in Inhomogeneous Quantum Systems -- 1.3 Correlations -- Part II: Theory -- Chapter 2: Nonequilibrium Green's Functions -- 2.1 Introduction -- 2.1.1 Keldysh Contour -- 2.1.2 One-Particle Nonequilibrium Green's Function -- 2.2 Equations of Motion -- 2.2.1 Keldysh-Kadanoff-Baym Equations -- 2.2.2 Equilibrium Limit. Dyson Equation -- 2.3 Many-Body Approximations -- 2.3.1 Requirements for a Conserving Scheme -- 2.3.2 Perturbation Expansions -- 2.4 Quantum Kinetic Equations for Single-Time Quantities -- 2.4.1 The Reconstruction Problem for the One-Particle Green's Function -- 2.4.2 The Generalized Kadanoff-Baym Ansatz -- Part III: Computational Methods -- Chapter 3: Representations of the Nonequilibrium Green's Function -- 3.1 Numerical Resources -- 3.1.1 Homogeneous Systems. A Brief Outline -- 3.1.2 Inhomogeneous Systems. Computer Memory as Limiting Factor -- 3.2 Grid versus Basis Representations for Inhomogeneous Systems -- 3.3 An Ef cient Solution: The Finite Element-Discrete Variable Representation -- 3.3.1 General Idea and Background -- 3.3.2 Construction of the FE-DVR Basis -- 3.3.3 Matrix Elements of Relevant Energies -- 3.3.4 First- and Second-Order Self-energies -- Chapter 4: Computation of Equilibrium States and Time-Propagation -- 4.1 Preparing the Initial State: Ground State or Equilibrium -- 4.1.1 Time or Frequency Space? -- 4.1.2 Solution of the Dyson Equation in tau-Space -- 4.2 Nonequilibrium -- 4.2.1 Two-Time Propagation Method -- 4.2.2 Parallelization Strategies -- 4.2.3 Single-Time Propagation using the GKBA. , Part IV: Applications for Inhomogeneous Systems -- Chapter 5: Lattice Systems -- 5.1 Overview -- 5.2 A Basic Example -- 5.2.1 Dynamics Following a Non-Perturbative Excitation -- 5.2.2 Absorption Spectrum in Second Born Approximation -- Chapter 6: Non-Lattice Systems -- 6.1 Small Atoms and Molecules. Ground State Properties and Response to External Fields -- 6.1.1 Model-Like Treatment -- 6.1.2 3D Atoms and Molecules -- 6.2 Few-Electron Quantum Dots and Wells -- 6.2.1 Correlation Effects in the Optical Absorption Spectra -- 6.2.2 Electronic Double Excitations from the Kadanoff-Baym Equations -- Chapter 7: Conclusion and Outlook -- 7.1 Summary -- 7.2 Prospects for Future Applications -- Appendix A: Second Quantization -- A.1 Symmetry of Many-Body States -- A.2 Occupation Number Representation -- A.3 Particle Creation and Annihilation in Fock Space -- A.4 General Form of Operators -- Appendix B: Perturbation Expansion. Supplements -- B.1 Derivative of a Contour-Ordered Product -- B.2 Equations for Sigma(1) and deltaG(1)/deltav(1) in Terms of deltaSigma(1)/deltav(1) -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Keywords: Quantum theory-Mathematics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (149 pages)
    Edition: 1st ed.
    ISBN: 9783319167183
    Series Statement: Lecture Notes in Physics Series ; v.902
    DDC: 530.12
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- 1 Operator Spaces -- 1.1 Operator Spaces -- 1.1.1 Completely Bounded and Completely Positive Maps -- 1.1.2 Operator Systems -- 1.1.3 Fundamental Factorisation of CB Maps -- 1.2 More on CB and CP Maps -- 1.3 Ruan's Theorem and Its Applications -- 1.3.1 Ruan's Theorem -- 1.3.2 Some Applications and Some Basic Facts -- Analogy with Banach Space Properties -- 1.3.3 min and max Operator Space Structures on a Banach Space -- 1.4 Tensor Products of Operator Spaces -- 1.4.1 Injective Tensor Product -- 1.4.2 Projective Tensor Product -- 1.4.3 General Remarks -- 1.4.4 A Passing Remark on the Haagerup Tensor Product -- 1.5 Tensor Products of C*-Algebras -- 1.5.1 min and max Tensor Products of C*-Algebras -- 1.5.2 Kirchberg's Theorem -- References -- 2 Entanglement in Bipartite Quantum States -- 2.1 Quantum States, Observables and Probabilities -- 2.2 Entanglement -- 2.2.1 Schmidt Decomposition -- 2.2.2 Unitary Bases, EPR States and Dense Coding -- 2.3 Schmidt Rank of Bipartite Entangled States -- 2.3.1 Subspaces of Minimal Schmidt Rank -- 2.4 Schmidt Number of Mixed States -- 2.4.1 Test for Schmidt Number k Using k-Positive Maps -- 2.4.2 Schmidt Number of Generalized Werner States -- References -- 3 Operator Systems -- 3.1 Theorems of Choi -- 3.1.1 Douglas Factorization -- 3.1.2 Choi-Kraus Representation and Choi Rank -- Example: Binary Case Quantum Error Detection/Correction -- 3.2 Quantum Error Correction -- 3.2.1 Applications of Choi's Theorems to Error Correction -- 3.2.2 Shor's Code: An Example -- 3.3 Matrix Ordered Systems and Operator Systems -- 3.3.1 Duals of Matrix Ordered Spaces -- 3.3.2 Choi-Effros Theorem -- 3.4 Tensor Products of Operator Systems -- 3.4.1 Minimal Tensor Product of Operator Systems -- 3.4.2 Maximal Tensor Product of Operator Systems. , An Example of a Nuclear Operator System that is Not a C*-Algebra HP11 -- 3.5 Graph Operator Systems -- 3.5.1 Dual of a Graph Operator System -- 3.6 Three More Operator System Tensor Products -- 3.6.1 The Commuting Tensor Product c. -- 3.6.2 The Tensor Products el and er. -- 3.6.3 Lattice of Operator System Tensor Products -- 3.7 Some Characterizations of Operator System Tensor Products -- 3.7.1 Exact Operator Systems -- 3.7.2 Weak Expectation Property (WEP) -- 3.7.3 Operator System Local Lifting Property (OSLLP) -- 3.7.4 Double Commutant Expectation Property (DCEP) -- 3.8 Operator System Tensor Products and the Conjectures of Kirchberg and Tsirelson -- 3.8.1 Special Operator Sub-systems of the Free Group C*-Algebras -- 3.8.2 Kirchberg's Conjecture -- 3.8.3 Quotient of an Operator System -- References -- 4 Quantum Information Theory -- 4.1 Zero-Error Communication Via Quantum Channels -- 4.1.1 Conditions for Zero-Error Quantum Communication -- 4.1.2 Zero-Error Capacity and Lovasz Function -- 4.2 Strong Subadditivity and Its Equality Case -- 4.2.1 Monotonicity of Relative Entropy: Petz Theorem -- 4.2.2 Structure of States that Saturate Strong Subadditivity -- 4.2.3 An Operator Algebraic Proof of the Koashi-ImotoTheorem -- 4.3 Norms on Quantum States and Channels -- 4.4 Matrix-Valued Random Variables -- 4.4.1 Matrix Tail Bounds -- 4.4.2 Destroying Correlations -- 4.4.3 State Merging -- References -- Further Reading -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Quantum theory-Mathematics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (119 pages)
    Edition: 1st ed.
    ISBN: 9783030761042
    Series Statement: SpringerBriefs in Mathematical Physics Series ; v.41
    DDC: 530.12
    Language: English
    Note: Intro -- Preface -- Contents -- 1 Equiangular Lines -- 1.1 Introduction -- 1.2 Real Lines -- 1.3 Complex Lines -- References -- 2 Optimal Quantum Measurements -- 2.1 Introduction -- 2.2 SIC Representations of Quantum States -- 2.3 Constructing SICs Using Groups -- References -- 3 Geometry and Information Theory for Qubits and Qutrits -- 3.1 Qubits -- 3.2 Qutrits -- 3.3 Coherence -- References -- 4 SICs and Bell Inequalities -- 4.1 Mermin's Three-Qubit Bell Inequality -- 4.2 The Hoggar SIC -- 4.3 Qubit Pairs and Twinned Tetrahedral SICs -- 4.4 Failure of Hidden Variables for Qutrits -- 4.5 Quantum Theory from Nonclassical Probability Meshing -- References -- 5 The Hoggar-Type SICs -- 5.1 Introduction -- 5.2 Simplifying the QBic Equation -- 5.3 Triple Products and Combinatorial Designs -- 5.4 The Twin of the Hoggar SIC -- 5.5 Combinatorial Designs from the Twin Hoggar SIC -- 5.6 Quantum-State Compatibility -- 5.7 From Pauli Operators to Real Equiangular Lines -- 5.8 Concluding Remarks -- References -- 6 Sporadic SICs and the Exceptional Lie Algebras -- 6.1 Root Systems and Lie Algebras -- 6.2 E6 -- 6.3 E8 -- 6.4 E7 -- 6.5 The Regular Icosahedron and Real-Vector-Space Quantum Theory -- 6.6 Open Puzzles Concerning Exceptional Objects -- References -- 7 Exercises -- References -- Appendix Index -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Vienna :Springer Wien,
    Keywords: Many-body problem. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (268 pages)
    Edition: 1st ed.
    ISBN: 9783709118009
    Series Statement: Computational Microelectronics Series
    DDC: 530.12
    Language: English
    Note: Intro -- Preface -- Contents -- Notation -- Symbols -- Abbreviations -- Chapter 1 Introduction -- References -- Chapter 2 Review of Quantum Mechanics -- 2.1 Historical Background -- 2.2 Postulates of Quantum Mechanics -- 2.2.1 Quantum States -- 2.2.2 Operators -- 2.2.3 Measurements and Expectation Values -- 2.2.4 Schrödinger Equation -- 2.3 Spin -- 2.3.1 Spinors and Pauli Equation -- 2.3.2 Spin-Orbit Coupling -- References -- Chapter 3 Many-Body Systems -- 3.1 First Quantization -- 3.1.1 Indistinguishability -- 3.1.2 Slater Determinants and Permanents -- Fermions -- Bosons -- 3.1.3 Operators in the First Quantization Representation -- One-Body Operators -- Two-Body Operators -- 3.2 Second Quantization -- 3.2.1 Creation and Annihilation Operators -- Bosons -- Fermions -- 3.2.2 Operators in the Second Quantization Representation -- One-Body Operators -- Two-Body Operators -- 3.2.3 Basis Transformation -- 3.2.4 Field Operators -- 3.2.5 Quasi-particles and Collective Excitations -- 3.2.6 Harmonic Oscillator -- 3.2.7 Photons -- 3.2.8 Interaction with Photons -- References -- Chapter 4 Band Theory -- 4.1 Crystal Lattices -- 4.2 Electrons in Crystals -- 4.2.1 Bloch States -- 4.2.2 Tight-Binding Approximation -- 4.2.3 The Hubbard Model -- 4.3 Phonons -- 4.3.1 Phonon Interaction Potential -- Deformation Potential -- Polar Interaction -- 4.3.2 Scattering of Bloch States -- References -- Chapter 5 Statistical Mechanics -- 5.1 Historical Review -- 5.2 Basic Concepts -- 5.2.1 Macro and Microstates -- 5.2.2 Ergodicity -- 5.2.3 Classical and Quantum Statistics -- 5.3 Thermodynamics -- 5.3.1 The Laws of Thermodynamics -- 5.3.2 Closed Systems -- 5.3.3 Systems in Contact with a Heat Bath -- 5.3.4 Systems in Contact with a Heat and Particle Reservoir -- 5.3.5 Thermodynamic Potentials -- 5.3.6 Thermodynamic Equilibrium -- 5.3.7 Connection to Statistics. , 5.4 Statistical Ensembles -- 5.4.1 Micro-canonical Ensemble -- 5.4.2 Canonical Ensemble -- 5.4.3 Grand-Canonical Ensemble -- 5.5 Quantum Statistics -- 5.5.1 Density Matrix -- 5.5.2 Fermi-Dirac Statistics -- 5.5.3 Bose-Einstein Statistics -- 5.5.4 Maxwell-Boltzmann Statistics -- 5.6 Non-equilibrium Statistics -- 5.6.1 Boltzmann Transport Equation -- 5.6.2 Validity of the Boltzmann Transport Equation -- 5.6.3 Density Matrix -- 5.6.4 Wigner Representation -- 5.6.5 Green's Function -- References -- Chapter 6 Green's Function Formalism -- 6.1 Historical Review -- 6.2 Quantum Dynamics -- 6.2.1 Schrödinger Picture -- 6.2.2 Heisenberg Picture -- 6.2.3 Interaction Picture -- 6.2.4 The Evolution Operator -- 6.2.5 Imaginary Time Propagation -- 6.3 Equilibrium Green's Function -- 6.3.1 Zero Temperature Green's Function -- 6.3.2 Finite Temperature Green's Function -- 6.3.3 Matsubara Green's Function -- 6.4 Non-equilibrium Green's Functions -- 6.4.1 Non-equilibrium Ensemble Average -- 6.4.2 Contour-Ordered Green's Function -- 6.4.3 Keldysh Contour -- 6.4.4 Real-Time Formalism -- 6.4.5 Langreth Theorem -- 6.4.6 Non-interacting Fermions -- 6.4.7 Non-interacting Bosons -- 6.5 Perturbation Expansion of the Green's Function -- 6.5.1 Wick's Theorem -- 6.5.2 Feynman Diagrams -- 6.5.3 First-Order Perturbation Expansion -- 6.5.4 Dyson Equation -- 6.5.5 Electron-Electron Self-Energy -- 6.5.6 Electron-Phonon Self-Energy -- 6.6 Quantum Kinetic Equations -- 6.6.1 The Kadanoff-Baym Formulation -- 6.6.2 Keldysh Formulation -- 6.6.3 Steady-State Kinetic Equations -- 6.7 Variational Derivation of Self-Energies -- 6.7.1 Electron-Electron Interaction -- 6.7.2 Screened Interaction, Polarization, and Vertex Function -- 6.7.3 Electron-Phonon Interaction -- 6.7.4 The Phonon Green's Function -- 6.7.5 The Phonon Self-Energy -- 6.7.6 Approximation of the Self-Energy. , 6.8 Relation to Observables -- 6.8.1 Electron and Hole Density -- 6.8.2 Spectral Function and Local Density of States -- 6.8.3 Current Density -- References -- Chapter 7 Implementation -- 7.1 Basis Functions and Matrix Representation -- 7.1.1 Free Transverse-Direction -- 7.1.2 Real-Space Representation -- 7.1.3 Coupled Mode-Space Approach -- 7.1.4 Decoupled Mode-Space -- 7.2 Contacts -- 7.2.1 Matrix Truncation -- 7.2.2 Surface Green's Function -- 7.2.3 Sancho-Rubio Iterative Method -- 7.2.4 Contact Self-Energies -- 7.2.5 Wide-Band Limit -- 7.3 Scattering Self-Energies -- 7.3.1 Electron-Phonon Scattering -- 7.3.2 Acoustic Phonon -- 7.3.3 Optical Phonons -- 7.3.4 Polar Optical Phonons -- 7.4 Recursive Method for Calculating Green's Functions -- 7.4.1 Retarded and Advanced Green's Functions -- 7.4.2 Lesser and Greater Green's Functions -- 7.5 Evaluation of Observables -- 7.5.1 Carrier Concentration -- 7.5.2 Current Density -- 7.5.3 Transmission Probability -- 7.6 Selection of the Energy Grid -- 7.6.1 Confined States -- 7.6.2 Non-adaptive Energy Grid -- 7.6.3 Adaptive Energy Grid -- 7.7 Self-Consistent Simulations -- 7.7.1 Self-Consistent Iteration Scheme -- 7.7.2 Convergence of the Self-Consistent Simulations -- References -- Chapter 8 Applications -- 8.1 Introduction -- 8.2 Electronic Transport -- 8.2.1 Transport Models -- 8.2.2 Line-Edge Roughness -- 8.2.3 Substrate Corrugation -- 8.3 Spin Transport -- 8.3.1 Multi-orbital Model -- 8.3.2 Transport Model -- 8.3.3 Results -- 8.4 Phonon Transport -- 8.4.1 Phonon Bandstructure -- 8.4.2 Phonon Green's Function -- 8.4.3 Phonon Thermal Conductivity -- 8.4.4 Ballistic Phonon Transport -- 8.5 Graphene-Based Tunneling Transistors -- 8.5.1 Modeling -- 8.5.2 Self-Consistent Potential -- 8.5.3 Device Characteristics -- 8.6 CNT and GNR-Based Photodetectors -- 8.6.1 Electron-Photon Self-Energy. , 8.6.2 Quantum Efficiency -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Milton :Jenny Stanford Publishing,
    Keywords: Quantum theory-Mathematics. ; Electronic books.
    Description / Table of Contents: In this book, the authors demonstrate the huge practical utility of explaining quantum phenomena in many different research fields. Bohmian mechanics, the formulation of the quantum theory pioneered by Louis de Broglie and David Bohm, offers an alternative mathematical formulation of quantum phenomena in terms of quantum trajectories.
    Type of Medium: Online Resource
    Pages: 1 online resource (701 pages)
    Edition: 2nd ed.
    ISBN: 9781000650105
    DDC: 530.12
    Language: English
    Note: Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- Foreword to the First Edition -- Preface to the Second Edition -- Preface to the First Edition -- Introduction -- 1: Overview of Bohmian Mechanics -- 1.1 Historical Development of Bohmian Mechanics -- 1.1.1 Particles and Waves -- 1.1.2 Origins of the Quantum Theory -- 1.1.3 "Wave or Particle?" vs. "Wave and Particle" -- 1.1.4 Louis de Broglie and the Fifth Solvay Conference -- 1.1.5 Albert Einstein and Locality -- 1.1.6 David Bohm and Why the "Impossibility Proofs" were Wrong? -- 1.1.7 John Bell and Nonlocality -- 1.1.8 Quantum Hydrodynamics -- 1.1.9 Is Bohmian Mechanics a Useful Theory? -- 1.2 Bohmian Mechanics for a Single Particle -- 1.2.1 Preliminary Discussions -- 1.2.2 Creating a Wave Equation for Classical Mechanics -- 1.2.2.1 Newton's second law -- 1.2.2.2 Hamilton's principle -- 1.2.2.3 Lagrange's equation -- 1.2.2.4 Equation for an (infinite) ensemble of trajectories -- 1.2.2.5 Classical Hamilton-Jacobi equation -- 1.2.2.6 Local continuity equation for an (infinite) ensemble of classical particles -- 1.2.2.7 Classical wave equation -- 1.2.3 Trajectories for Quantum Systems -- 1.2.3.1 Schrödinger equation -- 1.2.3.2 Local conservation law for an (infinite) ensemble of quantum trajectories -- 1.2.3.3 Velocity of Bohmian particles -- 1.2.3.4 Quantum Hamilton-Jacobi equation -- 1.2.3.5 A quantum Newton-like equation -- 1.2.4 Similarities and Differences between Classical and Quantum Mechanics -- 1.2.5 Feynman Paths -- 1.2.6 Basic Postulates for a Single-Particle -- 1.3 Bohmian Mechanics for Many-Particle Systems -- 1.3.1 Preliminary Discussions: The Many Body Problem -- 1.3.2 Many-Particle Quantum Trajectories -- 1.3.2.1 Many-particle continuity equation -- 1.3.2.2 Many-particle quantum Hamilton-Jacobi equation. , 1.3.3 Factorizability, Entanglement, and Correlations -- 1.3.4 Spin and Identical Particles -- 1.3.4.1 Single-particle with s = 1/2 -- 1.3.4.2 Many-particle system with s = 1/2 particles -- 1.3.5 Basic Postulates for Many-Particle Systems -- 1.3.6 The Conditional Wave Function: Many-Particle Bohmian Trajectories without the Many-Particle Wave Function -- 1.3.6.1 Single-particle pseudo-Schrödinger equation for many-particle systems -- 1.3.6.2 Example: Application in factorizable many-particle systems -- 1.3.6.3 Example: Application in interacting many-particle systems without exchange interaction -- 1.3.6.4 Example: Application in interacting many-particle systems with exchange interaction -- 1.4 Bohmian Explanation of the Measurement Process -- 1.4.1 The Measurement Problem -- 1.4.1.1 The orthodox measurement process -- 1.4.1.2 The Bohmian measurement process -- 1.4.2 Theory of the Bohmian Measurement Process -- 1.4.2.1 Example: Bohmian measurement of the momentum -- 1.4.2.2 Example: Sequential Bohmian measurement of the transmitted and reflected particles -- 1.4.3 The Evaluation of a Mean Value in Terms of Hermitian Operators -- 1.4.3.1 Why Hermitian operators in Bohmian mechanics? -- 1.4.3.2 Mean value from the list of outcomes and their probabilities -- 1.4.3.3 Mean value from the wave function and the operators -- 1.4.3.4 Mean value from Bohmian mechanics in the position representation -- 1.4.3.5 Mean value from Bohmian trajectories -- 1.4.3.6 On the meaning of local Bohmian operators AB(x) -- 1.5 Concluding Remarks -- 1.6 Problems and Solutions -- A.1 Appendix: Numerical Algorithms for the Computation of Bohmian Mechanics -- A.1.1 Analytical Computation of Bohmian Trajectories -- A.1.1.1 Time-dependent Schrödinger equation for a 1D space (TDSE1D-BT) with an explicit method. , A.1.1.2 Time-independent Schrödinger equation for a 1D space (TISE1D) with an implicit (matrix inversion) method -- A.1.1.3 Time-independent Schrödinger equation for a 1D space (TISE1D) with an explicit method -- A.1.2 Synthetic Computation of Bohmian Trajectories -- A.1.2.1 Time-dependent quantum Hamilton-Jacobi equations (TDQHJE1D) with an implicit (Newton-like fixed Eulerian mesh) method -- A.1.2.2 Time-dependent quantum Hamilton-Jacobi equations (TDQHJE1D) with an explicit (Lagrangian mesh) method -- A.1.3 More Elaborated Algorithms -- 2: Hydrogen Photoionization with Strong Lasers -- 2.1 Introduction -- 2.1.1 A Brief Overview of Photoionization -- 2.1.2 The Computational Problem of Photoionization -- 2.1.3 Photoionization with Bohmian Trajectories -- 2.2 One-Dimensional Photoionization of Hydrogen -- 2.2.1 The Physical Model -- 2.2.2 Harmonic Generation -- 2.2.3 Above Threshold Ionization -- 2.3 Hydrogen Photoionization with Beams Carrying Orbital Angular Momentum -- 2.3.1 Physical System -- 2.3.2 Bohmian Equations in an Electromagnetic Field -- 2.3.3 Selection Rules -- 2.3.4 Numerical Simulations -- 2.3.4.1 Gaussian pulses -- 2.3.4.2 Laguerre-Gaussian pulses -- 2.4 Conclusions -- 3: Atomtronics: Coherent Control of Atomic Flow via Adiabatic Passage -- 3.1 Introduction -- 3.1.1 Atomtronics -- 3.1.2 Three-Level Atom Optics -- 3.1.3 Adiabatic Transport with Trajectories -- 3.2 Physical System: Neutral Atoms in Optical Microtraps -- 3.2.1 One-Dimensional Hamiltonian -- 3.3 Adiabatic Transport of a Single Atom -- 3.3.1 The Matter Wave STIRAP Paradox with Bohmian Trajectories -- 3.3.2 Velocities and Accelerations of Bohmian Trajectories -- 3.4 Adiabatic Transport of a Single Hole -- 3.4.1 Hole Transfer as an Array-Cleaning Technique -- 3.4.2 Adiabatic Transport of a Hole in an Array of Three Traps -- 3.4.2.1 Three-level approximation description. , 3.4.2.2 Numerical simulations -- 3.4.3 Hole Transport Fidelity -- 3.4.4 Bohmian Trajectories for the Hole Transport -- 3.4.5 Atomtronics with Holes -- 3.4.5.1 Single-hole diode -- 3.4.5.2 Single-hole transistor -- 3.5 Adiabatic Transport of a Bose-Einstein Condensate -- 3.5.1 Madelung Hydrodynamic Formulation -- 3.5.2 Numerical Simulations -- 3.6 Conclusions -- 4: Bohmian Pathways into Chemistry: A Brief Overview -- 4.1 Introduction -- 4.2 Approaching Molecular Systems at Different Levels -- 4.2.1 The Born-Oppenheimer Approximation -- 4.2.2 Electronic Configuration -- 4.2.3 Dynamics of "Small" Molecular Systems -- 4.2.4 Statistical Approach to Large (Complex) Molecular Systems -- 4.3 Bohmian Mechanics -- 4.3.1 Fundamentals -- 4.3.2 Nonlocality and Entanglement -- 4.3.3 Weak Values and Equations of Change -- 4.4 Applications -- 4.4.1 Time-Dependent DFT: The Quantum Hydrodynamic Route -- 4.4.2 Bound System Dynamics: Chemical Reactivity -- 4.4.3 Scattering Dynamics: Young's Two-Slit Experiment -- 4.4.4 Effective Dynamical Treatments: Decoherence and Reduced Bohmian Trajectories -- 4.4.5 Pathways to Complex Molecular Systems: Mixed Bohmian-Classical Mechanics -- 4.5 Concluding Remarks -- 5: Adaptive Quantum Monte Carlo Approach States for High-Dimensional Systems -- 5.1 Introduction -- 5.2 Mixture Modeling Approach -- 5.2.1 Motivation for a Trajectory-Based Approach -- 5.2.1.1 Bohmian interpretation -- 5.2.1.2 Quantum hydrodynamic trajectories -- 5.2.1.3 Computational considerations -- 5.2.2 Density Estimation -- 5.2.2.1 The mixture model -- 5.2.2.2 Expectation maximization -- 5.2.3 Computational Results -- 5.2.3.1 Bivariate distribution with multiple nonseparable Gaussian components -- 5.2.4 The Ground State of Methyl Iodide -- 5.3 Quantum Effects in Atomic Clusters at Finite Temperature -- 5.4 Quantum Structures at Zero and Finite Temperature. , 5.4.1 Zero Temperature Theory -- 5.4.2 Finite Temperature Theory -- 5.4.2.1 Computational approach: The mixture model -- 5.4.2.2 Computational approach: Equations of motion for the sample points -- 5.4.3 Computational Studies -- 5.4.3.1 Zero temperature results -- 5.4.3.2 Finite temperature results -- 5.5 Overcoming the Node Problem -- 5.5.1 Supersymmetric Quantum Mechanics -- 5.5.2 Implementation of SUSY QM in an Adaptive Monte Carlo Scheme -- 5.5.3 Test Case: Tunneling in a Double-Well Potential -- 5.5.4 Extension to Higher Dimensions -- 5.5.4.1 Discussion -- 5.6 Summary -- 6: Nanoelectronics: Quantum Electron Transport -- 6.1 Introduction: From Electronics to Nanoelectronics -- 6.2 Evaluation of the Electrical Current and Its Fluctuations -- 6.2.1 Bohmian Measurement of the Current as a Function of the Particle Positions -- 6.2.1.1 Relationship between current in the ammeter Iammeter, g(t) and the current in the device-active region Ig(t) -- 6.2.1.2 Relationship between the current on the device-active region Ig(t) and the Bohmian trajectories {r1,g[t], . . . , rMP,g[t]} -- 6.2.1.3 Reducing the number of degrees of freedom of the whole circuit -- 6.2.2 Practical Computation of DC, AC, and Transient Currents -- 6.2.3 Practical Computation of Current Fluctuations and Higher Moments -- 6.2.3.1 Thermal and shot noise -- 6.2.3.2 Practical computation of current fluctuations -- 6.3 Solving Many-Particle Systems with Bohmian Trajectories -- 6.3.1 Coulomb Interaction Among Electrons -- 6.3.2 Exchange and Coulomb Interaction Among Electrons -- 6.3.2.1 Algorithm for spinless electrons -- 6.3.2.2 Algorithm for electrons with spins in arbitrary directions -- 6.4 Dissipation with Bohmian Mechanics -- 6.4.1 Parabolic Band Structures: Pseudo Schrödinger Equation -- 6.4.2 Linear Band Structures: Pseudo Dirac Equation -- 6.5 The BITLLES Simulator. , 6.5.1 Overall Charge Neutrality and Current Conservation.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Wiesbaden :Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH,
    Keywords: Quantum theory-Mathematics. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (84 pages)
    Edition: 1st ed.
    ISBN: 9783658375812
    Series Statement: BestMasters Series
    DDC: 530.12
    Language: English
    Note: Intro -- Abstract -- Contents -- 1 Introduction -- 2 Mathematical Preliminaries -- 2.1 Basic Concepts of Vector Spaces -- 2.1.1 Minkowski Functionals -- 2.1.2 The Hahn-Banach Theorem -- 2.1.3 Locally Compact Spaces -- 2.1.4 Seminorms and Local Convexity -- 2.2 Vector Spaces With Order Unit -- 2.3 Base-norm Spaces -- 2.4 Functional Representation -- 2.5 Archimedeanization and Categories -- 2.6 Tensor Products -- 2.6.1 Tensor Products of Vector Spaces -- 2.6.2 Tensor Products of Order Unit Spaces -- 2.7 C*-algebras -- 2.8 Completely Positive Maps -- 2.9 Convex Polytopes -- 3 Generalized probabilistic theories -- 3.1 Preparation and Measurements -- 3.2 Attributes of GPTs -- 3.3 Examples of GPTs -- 4 Sections and Subsystems -- 4.1 Sections of the Effect Cone -- 4.2 Sections of the State Space -- 4.3 Spekkens' Toy Model -- 5 Two-Sections of Quantum Mechanics -- 5.1 Classification of Two Dimensional Sections -- 5.2 Geometric Evolution of State Spaces -- 6 Conclusion -- Bibliography.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Oxford :Oxford University Press, Incorporated,
    Keywords: Quantum optics. ; Optical lattices. ; Many-body problem. ; Quantum theory. ; Electronic books.
    Description / Table of Contents: This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.
    Type of Medium: Online Resource
    Pages: 1 online resource (494 pages)
    Edition: 1st ed.
    ISBN: 9780191626999
    DDC: 530.12
    Language: English
    Note: Cover -- Contents -- Abbreviations -- 1 Introduction -- 1.1 The third quantum revolution -- 1.2 Cold atoms from a historical perspective -- 1.3 Cold atoms and the challenges of condensed matter physics -- 1.4 Plan of the book -- 2 Statistical physics of condensed matter: basic concepts -- 2.1 Classical phase transitions -- 2.2 Bose-Einstein condensation in non-interacting systems -- 2.3 Quantum phase transitions -- 2.4 One-dimensional systems -- 2.5 Two-dimensional systems -- 3 Ultracold gases in optical lattices: basic concepts -- 3.1 Optical potentials -- 3.2 Control of parameters in cold atom systems -- 3.3 Non-interacting particles in periodic lattices: band structure -- 3.4 Bose-Einstein condensates in optical lattices: weak interacting limit -- 3.5 From weakly interacting to strongly correlated regimes -- 4 Quantum simulators of condensed matter -- 4.1 Quantum simulators -- 4.2 Hubbard models -- 4.3 Spin models and quantum magnetism -- 5 Bose-Hubbard models: methods of treatment -- 5.1 Introduction -- 5.2 Weak interactions limit: the Bogoliubov approach -- 5.3 Strong interactions limit: strong coupling expansion -- 5.4 Perturbative mean-field approach -- 5.5 Gutzwiller approach -- 5.6 Exact diagonalization and the Lanczos method -- 5.7 Quantum Monte Carlo: path integral and worm algorithms -- 5.8 Phase-space methods -- 5.9 Analytic one-dimensional methods -- 5.10 Renormalization approaches in one dimension: DMRG and MPS -- 5.11 Renormalization approaches in two dimension: PEPS, MERA, and TNS -- 6 Fermi and Fermi-Bose Hubbard models: methods of treatment -- 6.1 Introduction -- 6.2 Fermi Hubbard model and BCS theory -- 6.3 Balanced BCS-BEC crossover -- 6.4 Mean-field description of imbalanced BCS-BEC crossover -- 6.5 Fermi Hubbard model and strongly correlated fermions -- 6.6 Hubbard models and effective Hamiltonians. , 6.7 Fermi-Bose Hubbard models -- 7 Ultracold spinor atomic gases -- 7.1 Introduction -- 7.2 Spinor interactions -- 7.3 Spinor Bose-Einstein condensates: mean-field phases -- 7.4 Spin textures and topological defects -- 7.5 Bosonic spinor gases in optical lattices -- 7.6 Spinor Fermi gases -- 8 Ultracold dipolar gases -- 8.1 Introduction -- 8.2 Properties of dipole-dipole interaction -- 8.3 Ultracold dipolar systems -- 8.4 Ultracold trapped dipolar gases -- 8.5 Dipolar gas in a lattice: extended Hubbard models -- 8.6 Dipolar bosons in a 2D optical lattice -- 8.7 Quantum Monte Carlo studies of dipolar gases -- 8.8 Further dipole effects -- 9 Disordered ultracold atomic gases -- 9.1 Introduction -- 9.2 Disorder in condensed matter -- 9.3 Realization of disorder in ultracold atomic gases -- 9.4 Disordered Bose-Einstein condensates -- 9.5 Disordered ultracold fermionic systems -- 9.6 Disordered ultracold Bose-Fermi and Bose-Bose mixtures -- 9.7 Spin glasses -- 9.8 Disorder-induced order -- 10 Frustrated ultracold atom systems -- 10.1 Introduction -- 10.2 Quantum antiferromagnets -- 10.3 Physics of frustrated quantum antiferromagnets -- 10.4 Realization of frustrated models with ultracold atoms -- 11 Ultracold atomic gases in 'artificial' gauge fields -- 11.1 Introduction -- 11.2 Ultracold atoms in rapidly rotating microtraps -- 11.3 Gauge symmetry in the lattice -- 11.4 Lattice gases in 'artificial' Abelian gauge fields -- 11.5 Lattice gases in 'artificial' non-Abelian gauge fields -- 11.6 Integer quantum Hall effect and emergence of Dirac fermions -- 11.7 Fractional quantum Hall effect in non-Abelian fields -- 11.8 Ultracold gases and lattice gauge theories -- 11.9 Generation of 'artificial' gauge fields -- 12 Many-body physics from a quantum information perspective -- 12.1 Introduction -- 12.2 Crash course on quantum information. , 12.3 Quantum phase transitions and entanglement -- 12.4 Area laws -- 12.5 The world according to tensor networks -- 13 Quantum information with lattice gases -- 13.1 Introduction -- 13.2 Quantum circuit model in optical lattices -- 13.3 One-way quantum computer with lattice gases -- 13.4 Topological quantum computing in optical lattices -- 13.5 Distributed quantum information -- 14 Detection of quantum systems realized with ultracold atoms -- 14.1 Introduction -- 14.2 Time of flight: first-order correlations -- 14.3 Time of flight and noise correlations: higher-order correlations -- 14.4 Bragg spectroscopy -- 14.5 Optical Bragg diffraction -- 14.6 Single-atom detectors -- 14.7 Quantum polarization spectroscopy -- 15 Perspectives: beyond standard optical lattices -- 15.1 Introduction -- 15.2 Beyond standard optical lattices: new trends -- 15.3 Standard optical lattices: what's new? -- Bibliography -- Index -- A -- B -- C -- D -- E -- F -- G -- H -- I -- J -- K -- L -- M -- N -- O -- P -- Q -- R -- S -- T -- U -- V -- W -- X.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Milton :Taylor & Francis Group,
    Keywords: Quantum theory-Mathematics. ; Electronic books.
    Description / Table of Contents: The book includes modern topics like coherent states, propagators and Feynman's path integral method, Landau levels, Aharonov Bohm Effect, parity operation, time reversal symmetry and Dirac relativisticequation. Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
    Type of Medium: Online Resource
    Pages: 1 online resource (230 pages)
    Edition: 1st ed.
    ISBN: 9781000517750
    DDC: 530.12
    Language: English
    Note: Cover -- Title Page -- Copyright Page -- Dedication -- Preface -- Contents -- Notations & -- Fundamental Constants -- 1 Basic Concepts & -- Formulation -- 1.1 Introduction -- 1.2 Measurements -- 1.3 Basic Postulates -- (i) Postulate 1. State of the System -- (ii) Postulate 2. Superposition of States -- (iii) Postulate 3. Operators for Dynamical Variables -- (iv) Postulate 4. Eigenvalues and Eigenvectors of Operators -- (v) Postulate 5. Hermitian Operator -- (vi) Postulate 6. Basis Vectors and Completeness Condition -- (vii) Expectation Value -- 2 Representation Theory -- 2.1 Elements of Representation Theory -- (i) The Energy Representation, called the E-representatrion -- (ii) Operators as Matrices -- 2.2 Change in Representation and Unitary Transformation -- 2.3 Commuting Observables -- 2.4 Uncertainty Relation -- 3 Position & -- Momentum Operators -- 3.1 Position Operator and its Eigenkets -- 3.2 Spatial Translation and Momentum Operator -- 3.3 Momentum Operator in Position Basis -- 3.4 Momentum Wavefunction -- 3.5 Gaussian as Minimum Uncertainty Wave Packet -- 3.6 Extension to Three Dimension -- 4 Time Evolution of Quantum Systems -- 4.1 Time Evolution Operator -- 4.2 The Schrödinger Equation of Motion -- 4.3 Time Dependence of Expectation Values: Ehrenfest Theorem -- 4.4 The Schrödinger and Heisenberg Pictures -- 4.5 The Heisenberg Equation of Motion -- 4.6 Operator Form of the Hamiltonian: Classical Analogue -- 4.7 Time Dependence of the Base Kets -- 5 Propagators and Feynman Path Integral -- 5.1 Propagators -- 5.2 Feynman's Path -- 6 Application in One Dimension -- 6.1 Free Particle -- 6.2 Rectangular Potential Well -- (i) Bound State Solution -- (ii) Unbound State Solution -- 6.3 Rectangular Potential Barrier -- 6.4 Delta Function Potential -- 6.5 Oscillator Problem by Schrödinger Method. , 6.6 Linear Harmonic Oscillator by Operator Method -- (i) Time Evolution of Oscillator -- (ii) Coherent State -- 6.7 Periodic Potential -- 7 Rotation and Angular Momentum -- 7.1 Introduction -- 7.2 Rotation in Three Dimension -- 7.3 Rotation of System Kets -- 7.4 Eigenvalue and Eigenvectors of Angular Momentum -- 7.5 Matrix Representation of Angular Momentum Operator -- 7.6 Orbital Angular Momentum -- 8 Spin Angular Momentum -- 8.1 The Stern Gerlach Experiment -- 8.2 Matrix Representation of Spin -- 8.3 Finite Rotations in Spin-½ Space -- 8.4 Pauli Two Component Spinor Formalism -- 9 Addition of Angular Momenta -- 9.1 Addition of Two Angular Momenta Ĵ[sub(1)] and Ĵ[sub(2)] -- 9.2 Addition of Orbital Angular Momentum and Spin of a Particle -- 9.3 Addition of Two Spins -- 10 Applications II -- 10.1 Hydrogen Atom -- 10.2 Charged Particle in Magnetic Field -- (i) The Landau Levels -- (ii) The Aharanov Bohm Effect -- 11 Symmetry in Quantum Mechanics -- 11.1 Symmetry Principle and Conservation Laws -- (i) Symmetry and Degeneracy -- 11.2 Space Reflection or Parity Operation -- 11.3 Time Reversal Symmetry -- 12 Approximate Methods -- 12.1 Semiclassical Aprroximation or WKB Method -- 12.2 Rayleigh Schrödinger Perturbation -- (i) Non-Degenerate Case -- (ii) Perturbation Calculations for Degenerate Energy Levels -- 12.3 The Variational Method -- 13 Methods for Time Dependent Problems -- 13.1 Time Dependent Perturbation -- 13.2 Harmonic Perturbation -- (i) Fermi's Golden Rule -- (ii) Ionization of Hydrogen Atom -- 13.3 Adiabatic Approximation -- 13.4 The Sudden Approximation -- 14 Scattering Theory I -- 14.1 Scattering Experiments: Cross Section -- 14.2 Potential Scattering -- 14.3 The Method of Partial Waves -- 14.4 The Optical Theorem -- 15 Scattering Theory II -- 15.1 The Lippmann Schwinger Equation -- 15.2 The Born Approximation. , 15.3 The Higher Order Born Approximation -- 16 Relativistic Wave Equations -- 16.1 Introduction -- 16.2 The Klein Gordon Equation -- 16.3 The Dirac Relativistic Equation -- 16.4 Conclusion -- A: Appendix -- A.1 Expansion in a Series of Orthonormal Functions -- A.2 Fourier Series -- A.3 Fourier Transforms -- A.4 The Dirac Delta Function -- Bibliography -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    Keywords: Many-body problem. ; Electronic books.
    Description / Table of Contents: Molecular and atomic interactions are explored using many-body quantum mechanical theory. This book is the first unified treatment describing the popular many-body-perturbation theory (MBPT) and coupled-cluster (CC) quantum mechanical theory. It introduces an unambiguous approach, teaching the reader to understand and confidently derive relevant equations for current methods.
    Type of Medium: Online Resource
    Pages: 1 online resource (548 pages)
    Edition: 1st ed.
    ISBN: 9780511593666
    Series Statement: Cambridge Molecular Science Series
    DDC: 530.12
    Language: English
    Note: Cover -- Half-title -- Title -- Copyright -- Dedication -- Contents -- Preface -- 1 Introduction -- 1.1 Scope -- 1.2 Conventions and notation -- 1.3 The independent-particle approximation -- 1.4 Electron correlation -- 1.5 Configuration interaction -- 1.6 Motivation -- 1.7 Extensivity -- 1.8 Disconnected clusters and extensivity -- 2 Formal perturbation theory -- 2.1 Background -- 2.2 Classical derivation of Rayleigh-Schrodinger perturbation theory -- 2.2.1 The perturbation Ansatz -- 2.2.2 Indeterminacy of the solution -- 2.2.3 Energy expressions -- 2.2.4 Order-by-order expansion -- 2.2.5 Expansion in zero-order functions -- 2.2.6 Wigner's 2n + 1 rule -- 2.2.7 The Hylleraas variation principle for the first-order wave function -- 2.3 Projection operators -- 2.4 General derivation of formal time-independent perturbation theories -- 2.4.1 General formalism -- 2.4.2 Brillouin-Wigner perturbation theory -- 2.4.3 Demonstration of non-extensivity of finite-order BWPT -- 2.4.4 Formal Rayleigh-Schrodinger perturbation theory -- 2.4.5 The general (non-diagonal) case -- 2.4.6 Bracketing procedure for RSPT -- 2.4.7 Summary of formal RSPT results -- 2.4.8 Extensivity of Rayleigh-Schrodinger perturbation theory -- 2.5 Similarity transformation derivation of the formal perturbation equations and quasidegenerate PT -- 2.6 Other approaches -- 3 Second quantization -- 3.1 Background -- 3.2 Creation and annihilation operators -- 3.2.1 Definitions -- 3.2.2 Anticommutation relations -- 3.2.3 Representation of operators -- 3.2.4 Invariance under unitary transformations -- 3.3 Normal products and Wick's theorem -- 3.3.1 Normal products of operators -- 3.3.2 Contractions -- 3.3.3 Time-independent Wick's theorem -- 3.3.4 Outline of proof of Wick's theorem -- 3.4 Particle-hole formulation -- 3.4.1 The reference state. , 3.4.2 Normal products and Wick's theorem relative to the Fermi vacuum -- 3.5 Partitioning of the Hamiltonian -- 3.6 Normal-product form of the quantum-mechanical operators -- 3.6.1 One-electron operators -- 3.6.2 Two-electron operators -- 3.6.3 The normal-product Hamiltonian -- 3.7 Generalized time-independent Wick's theorem -- 3.8 Evaluation of matrix elements -- 4 Diagrammatic notation -- 4.1 Time ordering -- 4.2 Slater determinants -- 4.3 One-particle operators -- 4.3.1 Representation of one-particle operators and contractions -- 4.3.2 Rules of interpretation -- 4.3.3 The complete one-particle operator -- 4.3.4 Products of one-particle operators -- 4.3.5 Phase factors -- 4.4 Two-particle operators -- 4.4.1 Goldstone diagrams for a two-particle operator -- 4.4.2 Vacuum expectation values of products of two-particle operators -- 4.4.3 Hugenholtz diagrams -- 4.4.4 Antisymmetrized Goldstone diagrams -- 4.4.5 Representation of operators not in normal-product form -- 4.4.6 The RSPT perturbation operator -- 5 Diagrammatic expansions for perturbation theory -- 5.1 Resolvent operator and denominators -- 5.2 First-order energy -- 5.3 Second-order energy -- 5.4 Third-order energy -- 5.5 Conjugate diagrams -- 5.6 Wave-function diagrams -- 5.6.1 First-order wave function -- 5.6.2 Second-order wave function -- 5.7 Fourth-order energy -- 5.7.1 Energy formula -- 5.7.2 Diagrams for E(4) in the canonical HF case -- 5.7.3 Non-HF diagrams for E(4) -- 5.7.4 Cancellation of the unlinked diagrams in E(4) -- 5.7.5 Role of the EPV terms -- 5.8 Linked-diagram theorem -- 5.9 Numerical example -- 5.10 Unlinked diagrams and extensivity -- 5.10.1 Extensivity implications -- 5.10.2 The dependence of diagrams -- 5.10.3 Relationship to configuration interaction (CI) -- 6 Proof of the linked-diagram theorem -- 6.1 The factorization theorem -- 6.2 The linked-diagram theorem. , 7 Computational aspects of MBPT -- 7.1 Techniques of diagram summation -- 7.2 Factorization of fourth-order quadruple-excitation diagrams -- 7.3 Spin summations -- 8 Open-shell and quasidegenerate perturbation theory -- 8.1 Formal quasidegenerate perturbation theory (QDPT) -- 8.2 The Fermi vacuum and the model states -- 8.3 Normal-product form of the generalized Bloch equations -- 8.4 Diagrammatic notation for QDPT -- 8.5 Schematic representation of the generalized Bloch equation -- 8.6 Level-shift and wave-operator diagrams -- 8.6.1 Zero and first order -- 8.6.2 Second-order level-shift operator -- 8.6.3 Second-order wave operator -- 8.6.4 Weight factors and phases -- 8.6.5 Folded diagrams -- 8.6.6 Third-order level-shift operator -- 8.6.7 Third-order wave operator -- 8.7 Incomplete model space -- 8.7.1 The Hose-Kaldor approach -- 8.7.2 The one-electron interaction -- 8.7.3 First-order diagrams -- 8.7.4 Second-order diagrams -- 8.7.5 Third-order level-shift diagrams -- 9 Foundations of coupled-cluster theory -- 9.1 Coupled-cluster theory for noninteracting He atoms -- 9.2 The coupled-cluster wave function -- 9.2.1 The exponential Ansatz and extensivity -- 9.2.2 The cluster operators -- 9.3 The coupled-cluster doubles (CCD) equations -- 9.3.1 Coupled-cluster doubles equations: configuration-space derivation -- 9.3.2 Coupled-cluster doubles equations: algebraic derivation -- 9.4 Exponential Ansatz and the linked-diagram theorem of MBPT -- 9.5 Diagrammatic derivation of the CCD equations -- 10 Systematic derivation of the coupled-cluster equations -- 10.1 The connected form of the CC equations -- 10.2 The general form of CC diagrams -- 10.3 Systematic generation of CC diagrams -- 10.4 The coupled-cluster singles and doubles (CCSD) equations -- 10.5 Coupled-cluster singles, doubles and triples (CCSDT) equations. , 10.6 Coupled-cluster singles, doubles, triples and quadruples (CCSDTQ) equations -- 10.7 Coupled-cluster effective-Hamiltonian diagrams -- 10.8 Results of various CC methods compared with full CI -- 11 Calculation of properties in coupled-cluster theory -- 11.1 Expectation value for a CC wave function -- 11.2 Reduced density matrices -- 11.3 The response treatment of properties -- 11.4 The CC energy functional -- 11.5 The Λ equations -- 11.6 Effective-Hamiltonian form of the… -- 11.7 Response treatment of the density matrices -- 11.8 The perturbed reference function -- 11.9 The CC correlation-energy derivative -- 12 Additional aspects of coupled-cluster theory -- 12.1 Spin summations and computational considerations -- 12.2 Coupled-cluster theory with an arbitrary single-determinant reference function -- 12.3 Generalized many-body perturbation theory -- 12.4 Brueckner orbitals and alternative treatments of ˆ T1 -- 12.5 Monitoring multiplicities in open-shell coupled-cluster calculations -- 12.6 The A and B response matrices from the viewpoint of CCS -- 12.7 Noniterative approximations based on the CC energy functional -- 12.8 The nature of the solutions of CC equations -- 13 The equation-of-motion coupled-cluster method for excited, ionized and electron-attached states -- 13.1 Introduction -- 13.2 The EOM-CC Ansatz -- 13.3 Diagrammatic treatment of the EE-EOM-CC equations -- 13.4 EOM-CC treatment of ionization and electron attachment -- 13.5 EOM-CC treatment of higher-order properties -- 13.6 EOM-CC treatment of frequency-dependent properties -- 14 Multireference coupled-cluster methods -- 14.1 Introduction -- 14.2 Hilbert-space state-universal MRCC -- 14.3 Hilbert-space state-specific MRCC -- 14.4 Fock-space valence-universal MRCC -- 14.4.1 The Fock-space approach -- 14.4.2 The valence-universal wave operator -- 14.4.3 The Fock-space Bloch equations. , 14.4.4 Relationship to EOM-CC -- 14.5 Intermediate-Hamiltonian Fock-space MRCC -- References -- Author index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...