GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (2)
  • Journals
  • 2020-2024  (1)
  • 1995-1999  (1)
  • 333.79  (1)
  • 363.7  (1)
  • 333.72
  • 658.5
Document type
  • GEOMAR Catalogue / E-Books  (2)
  • Journals
Source
Language
Years
Year
DDC
  • 1
    Online Resource
    Online Resource
    Oxford :Taylor & Francis Group,
    Keywords: Environmental management. ; Electronic books.
    Description / Table of Contents: Environmental Science for Environmental Management has quickly established itself as the leading introduction to environmental science, demonstrating how a more environmental science can create an effective approach to environmental management on different spatial scales. Since publication of the first edition, environmentalism has become an increasing concern on the global political agenda. Following the Rio Conference and meetings on population, social justice, women, urban settlement and oceans, civil society has increasingly promoted the cause of a more radical agenda, ranging from rights to know, fair trade, social empowerment, social justice and civil rights for the oppressed, as well as novel forms of accounting and auditing. This new edition is set in the context of a changing environmentalism and a challenged science. It builds on the popularity and applicability of the first edition and has been fully revised and updated by the existing writing team from the internationally renowned School of Environmental Science at the University of East Anglia.
    Type of Medium: Online Resource
    Pages: 1 online resource (539 pages)
    Edition: 2nd ed.
    ISBN: 9781317880349
    DDC: 363.7
    Language: English
    Note: Cover -- Half Title -- Title -- Copyright -- Dedication -- Contents -- List of contributors -- Preface -- Foreword -- Acknowledgements -- List of journals -- 1 Environmental science on the move -- 2 The sustainability debate -- 3 Environmental politics and policy processes -- 4 Environmental and ecological economics -- 5 Biodiversity and ethics -- 6 Population, adaptation and resilience -- 7 Climate change -- 8 Managing the oceans -- 9 Coastal processes and management -- 10 GIS and environmental management -- 11 Soil erosion and land degradation -- 12 River processes and management -- 13 Groundwater pollution and protection -- 14 Marine and estuarine pollution -- 15 Urban air pollution and public health -- 16 Preventing disease -- 17 Environmental risk management -- 18 Waste management -- 19 Managing the global commons -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    San Diego :Elsevier Science & Technology,
    Keywords: Energy industries. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (346 pages)
    Edition: 1st ed.
    ISBN: 9780128226674
    Series Statement: Energy Services and Management Series
    DDC: 333.79
    Language: English
    Note: Front Cover -- Energy Services Fundamentals and Financing -- Copyright Page -- Contents -- List of Contributors -- 1 Energy services -- 1 Energy services: concepts, applications and historical background -- 1.1 Introduction -- 1.2 Energy and population growth -- 1.3 Energy saving in buildings -- 1.4 Energy use in agriculture -- 1.5 Renewable energy technologies -- 1.5.1 Solar energy -- 1.5.2 Efficient bioenergy use -- 1.5.2.1 Briquette processes -- 1.5.2.2 Improved cook stoves -- 1.5.2.3 Biogas technology -- 1.5.2.4 Improved forest and tree management -- 1.5.2.5 Gasification application -- 1.5.3 Combined heat and power -- 1.5.4 Hydrogen production -- 1.5.5 Hydropower generation -- 1.5.6 Wind energy -- 1.6 Energy and sustainable development -- 1.7 Global warming -- 1.8 Recommendations -- 1.9 Conclusion -- References -- 2 Energy financing schemas -- 2 The promotion of renewable energy communities in the European Union -- 2.1 Overview -- 2.2 The link between the provision of energy services and the increase of energy efficiency -- 2.3 The efficiency gains stemming from distributed generation of energy production -- 2.4 The concept of renewable energy community -- 2.5 The promotion of renewable energy communities in EU law -- 2.6 The promotion of renewable energy communities in the draft National Energy and Climate Plans -- 2.7 Conclusion -- References -- 3 Financial schemes for energy efficiency projects: lessons learnt from in-country demonstrations -- 3.1 Introduction -- 3.2 The proposed methodology -- 3.3 Innovative financing schemes -- 3.3.1 Crowdfunding -- 3.3.2 Energy performance contracting -- 3.3.3 Green bonds -- 3.3.4 Guarantee funds -- 3.3.5 Revolving funds -- 3.3.6 Soft loans -- 3.3.7 Third-party financing -- 3.4 Case study countries -- 3.4.1 Bulgaria -- 3.4.2 Greece -- 3.4.3 Lithuania -- 3.4.4 Spain -- 3.5 Key actors identification. , 3.6 Knowledge transfer -- 3.6.1 Peer-to-Peer learning -- 3.6.2 Capacity building activities -- 3.7 Conclusions -- References -- 3 Energy systems in buildings -- 4 Energy in buildings and districts -- 4.1 Introduction -- 4.2 Thermal comfort -- 4.3 User behavior -- 4.4 Weather conditions under climate change and growing urbanization -- 4.5 Envelope and materials -- 4.6 From passive to nearly zero-energy building design -- 4.7 Smart buildings and home automation -- 4.8 From smart buildings to smart districts and cities -- 4.9 Concluding discussion -- References -- 5 Renewable energy integration as an alternative to the traditional ground-source heat pump system -- Nomenclature -- 5.1 Introduction -- 5.2 Methodology -- 5.2.1 Description of the proposed solution -- 5.2.2 Test procedure -- 5.3 Technical calculation -- 5.3.1 Thermal module -- 5.3.1.1 Geothermal energy -- 5.3.1.2 Thermal solar energy -- 5.3.2 Power module -- 5.3.2.1 Photovoltaic solar energy -- 5.3.2.2 Wind energy -- 5.3.3 Contribution of the suggested installation -- 5.4 Economic and environmental analysis -- 5.4.1 Economic analysis -- 5.4.2 Environmental evaluation -- 5.5 Discussion -- 5.5.1 Sensitivity analysis -- 5.5.1.1 Electricity price -- 5.5.1.2 Electric rate -- 5.5.1.3 CO2 emission factor -- 5.6 Conclusions -- Acknowledgments -- References -- 6 Energy-saving strategies on university campus buildings: Covenant University as case study -- 6.1 Introduction -- 6.1.1 Energy modeling software for buildings -- 6.1.2 Energy conservation measures in buildings -- 6.2 Materials and methods -- 6.2.1 Study location -- 6.2.2 Procedure for data collection -- 6.2.3 Instrumentation and procedure for data analysis -- 6.2.4 Economic analysis -- 6.2.5 Assessment of environmental impacts -- 6.3 Results and discussions -- 6.3.1 Result of energy audit in cafeterias1 and 2. , 6.3.2 Result of energy audit in Mechanical Engineering building -- 6.3.3 Result of energy audit in university library -- 6.3.4 Result of energy audit in health center -- 6.3.5 Result of energy audit in the students' halls of residence -- 6.3.6 Qualitative recommendation analysis -- 6.3.6.1 Replacement of lighting fixtures with light-emitting diode bulbs -- 6.3.6.2 Installation of solar panels on the roofs of selected buildings -- 6.4 Conclusion -- References -- 7 Energy conversion systems and Energy storage systems -- 7.1 Introduction -- 7.2 Energy systems in buildings -- 7.2.1 Energy generation systems -- 7.2.1.1 Combined heat and power system -- 7.2.1.2 Solar photovoltaic system -- 7.2.1.3 Solar thermal system -- 7.2.1.4 Organic Rankine cycle system -- 7.2.1.5 Geothermal system -- 7.2.1.6 Wind turbine system -- 7.2.2 Energy conversion systems -- 7.2.2.1 Heating systems -- 7.2.2.2 Cooling systems -- 7.2.2.3 Ventilation systems -- 7.2.3 Energy storage systems -- 7.2.3.1 Battery energy storage system -- 7.2.3.2 Thermal energy storage system -- 7.3 Conclusion -- References -- 8 Energy systems in buildings -- 8.1 Introduction -- 8.2 Energy-efficient building envelopes -- 8.2.1 Increasing thermal resistance of the building envelope -- 8.2.2 Climate-specific design of energy-efficient envelopes -- 8.3 Renewable energy sources for building energy application -- 8.3.1 Analyzing electrical/thermal loads of a building -- 8.3.2 Consideration of local codes and requirements for renewable energy systems -- 8.3.3 Solar energy systems -- 8.3.3.1 Solar water heating -- 8.3.3.1.1 Flat-plate collectors -- 8.3.3.1.2 Evacuated tube solar thermal collectors -- 8.3.3.1.3 Choice of solar thermal collectors -- 8.3.3.1.3.1 Cost -- 8.3.3.1.3.2 Performance -- 8.3.3.1.3.3 Installation -- 8.3.4 Building-integrated photovoltaic systems -- 8.4 Solar thermal energy storage. , 8.4.1 Types of thermal energy storage technologies -- 8.4.1.1 Sensible heat storage system -- 8.4.1.1.1 Sensible solid heat storage system -- 8.4.1.1.2 Sensible liquid heat storage system -- 8.4.1.2 Sensible cold storage system -- 8.4.1.3 Latent heat storage system -- 8.4.1.4 Thermochemical storage -- 8.5 Wind energy -- 8.5.1 Brief introduction -- 8.5.2 Wind resource assessment -- 8.5.3 Building-integrated/mounted wind turbine -- 8.5.3.1 Building-integrated wind turbines -- 8.5.3.2 Building-mounted wind turbines -- 8.5.3.3 Building-augmented wind turbines -- 8.5.4 Optimizing building-integrated/mounted wind turbine devices -- 8.5.5 Small/micro wind turbines for building application -- 8.6 Heat pumps -- 8.6.1 Air-source heat pumps -- 8.6.2 Ground-source heat pumps -- 8.6.3 Working principles of heat pumps -- 8.6.3.1 The heating cycle -- 8.6.3.2 The cooling cycle -- 8.6.3.3 The defrost cycle -- 8.6.4 Performance measures -- 8.7 Biomass -- 8.8 Summary -- References -- 4 Energy efficiency in industrial sector -- 9 Energy efficiency and renewable energy sources for industrial sector -- 9.1 Introduction -- 9.2 Global energy trends -- 9.3 Energy consumption and emissions in industry -- 9.3.1 General trends -- 9.3.2 Energy and carbon-intensive industrial sectors -- 9.4 Energy efficiency in industry for climate change mitigation -- 9.4.1 The need for innovation -- 9.5 Energy efficiency and renewable sources in industry -- 9.5.1 Bioenergy -- 9.5.2 Solar heat -- 9.6 Case study in Turkey -- 9.6.1 National Energy Efficiency Action Plan -- 9.6.2 General overview -- 9.6.3 Industry and technology -- 9.6.4 Aim of the development plans -- 9.7 Policy options -- 9.7.1 Lessons learned -- 9.7.2 International agreements -- 9.7.3 Procurement -- 9.8 Conclusions -- Acknowledgment -- References -- 10 Energy efficiency in tourism sector: eco-innovation measures and energy. , 10.1 Introduction -- 10.2 State of the arts -- 10.3 Methods and data -- 10.4 Results and discussion -- 10.5 Conclusions -- References -- 5 Energy services markets: development and status quo -- 11 Energy service markets: status quo and development -- 11.1 Introduction -- 11.2 The European framework for energy services -- 11.2.1 Legal framework -- 11.2.2 The European Union energy service markets: market volume, offers, and barriers -- 11.3 The German energy service market -- 11.3.1 Legal framework and information sources -- 11.3.2 Market overview -- 11.4 Developments of segments of the service market -- 11.4.1 Advice services -- 11.4.2 Energy management -- 11.4.3 Contracting -- 11.5 Market development -- 11.6 Conclusions: lessons learned from the German case -- References -- 12 Worldwide trends in energy market research -- 12.1 Introduction -- 12.2 Data -- 12.3 Results -- 12.3.1 Subjects from worldwide publications -- 12.3.2 Journals metric analysis -- 12.3.3 Countries, affiliations, and their main topics -- 12.3.4 Keywords from worldwide publications -- 12.3.5 Cluster analysis based on keywords -- References -- 13 Which aspects may prevent the development of energy service companies? The impact of barriers and country-specific condi... -- 13.1 Introduction -- 13.2 Which are the problems confronted by energy efficiency actions and policy instruments? -- 13.3 Which are the most relevant barriers confronted by energy service companies in different regions? -- 13.4 Removing barriers and promoting energy service companies -- 13.4.1 Actions to remove economic and market barriers -- 13.4.2 Actions to remove funding barriers -- 13.4.3 Enabling frameworks for energy service companies and other energy efficiency actions -- 13.5 Lessons learned and conclusions -- Acknowledgments -- References -- Further reading -- Index -- Back Cover.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...