GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books
  • Journals
  • OceanRep  (2)
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (2)
  • Oxford Univ. Press  (1)
  • Taylor & Francis  (1)
  • Elsevier
  • Regional Euro-Asian Biological Invasions Centre - REABIC
  • Wiley
  • 2005-2009  (2)
Document type
  • GEOMAR Catalogue / E-Books
  • Journals
  • OceanRep  (2)
Source
  • OceanRep: Article in a Scientific Journal - peer-reviewed  (2)
Publisher
Years
Year
  • 1
    Publication Date: 2020-07-20
    Description: The abundance and depth distribution of metazoans 〉20 μm were investigated at seven stations across the Southern Indian Ocean (SIO), October–November 2006. Copepod nauplii, copepodites and larvaceans dominated the metazooplankton community. Copepodites were most abundant within Agulhas Current and Southern Ocean waters, decreasing toward subtropical/tropical areas, whereas larvaceans showed the inverse pattern. The fraction 〈200 μm contained the majority of the zooplankton enumerated, including 81, 23 and 93% of the larvacean, copepodite and nauplii abundances, respectively. The relative abundance of larvaceans compared with copepodites increased from 7 to 44% from South Africa towards Australia. Peak copepodite biomass was observed off South Africa, while larvacean biomass was 〈1% of the copepodite biomass there, increasing to 6% in tropical waters. Both copepodite and nauplii biomass were positively correlated to total Chl a (P 〈 0.0001), larvacean biomass was only significantly related to temperature (P = 0.0213). Despite their low biomass, larvacean production was estimated to exceed the copepod production up to five times. It appears that the abundance and role of larvaceans in the SIO has been severely underestimated in previous studies; thus future investigations into the fate of organic matter will remain incomplete if this group is not adequately considered.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-01-24
    Description: The regional dust model system LM-MUSCAT-DES was developed in the framework of the SAMUM project. Using the unique comprehensive data set of near-source dust properties during the 2006SAMUMfield campaign, the performance of the model system is evaluated for two time periods in May and June 2006. Dust optical thicknesses, number size distributions and the position of the maximum dust extinction in the vertical profiles agree well with the observations. However, the spatio-temporal evolution of the dust plumes is not always reproduced due to inaccuracies in the dust source placement by the model. While simulated winds and dust distributions are well matched for dust events caused by dry synoptic-scale dynamics, they are often misrepresented when dust emissions are caused by moist convection or influenced by small-scale topography that is not resolved by the model. In contrast to long-range dust transport, in the vicinity of source regions the model performance strongly depends on the correct prediction of the exact location of sources. Insufficiently resolved vertical grid spacing causes the absence of inversions in the model vertical profiles and likely explains the absence of the observed sharply defined dust layers.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...