GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • OceanRep  (5)
  • OceanRep: Article in a Scientific Journal - without review  (5)
  • OceanRep: Talk
  • 2020-2022  (5)
  • 1
    Publication Date: 2021-10-08
    Description: Submarine landslides pose a hazard to coastal communities due to the tsunamis they can generate, and can damage critical seafloor infrastructure, such as the network of cables that underpin global data transfer and communications. These mass movements can be orders of magnitude larger than their onshore equivalents and are found on all of the world’s continental margins; from coastal zones to hadal trenches. Despite their prevalence, and importance to society, offshore monitoring studies have been limited by the largely unpredictable occurrence of submarine landslide and the need to cover large regions of extensive continental margins. Recent subsea monitoring has provided new insights into the preconditioning and run-out of submarine landslides using active geophysical techniques, but these tools only measure a very small spatial footprint, and are power and memory intensive, thus limiting long duration monitoring campaigns. Most landslide events therefore remain entirely unrecorded. Here we first show how passive acoustic and seismologic techniques can record acoustic emissions and ground motions created by terrestrial landslides. We then show how this terrestrial-focused research has catalysed advances in the detection and characterisation of submarine landslides, using both onshore and offshore networks of broadband seismometers, hydrophones and geophones. We then discuss some of the new insights into submarine landslide preconditioning, timing, location, velocity and their down-slope evolution that is arising from these advances. We finally outline some of the outstanding challenges, in particular emphasising the need for calibration of seismic and acoustic signals generated by submarine landslides and their run-out. Once confidence can be enhanced in submarine landslide signal detection and interpretation, passive seismic and acoustic sensing has strong potential to enable more complete hazard catalogues to be built, and opens the door to emerging techniques (such as fibre-optic sensing), to fill key, but outstanding, knowledge gaps concerning these important underwater phenomena.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-23
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Biogeosciences Discussions .
    Publication Date: 2021-03-05
    Description: Nitrogen fixers, or diazotrophs, play a key role in the carbon and nitrogen cycle of the world oceans, but the controlling mechanisms are not comprehensively understood yet. The present study compares two paradigms on the ecological niche of diazotrophs in an Earth System Model (ESM). In our standard model configuration, which is representative for most of the state-of-the-art pelagic ecosystem models, diazotrophs take advantage of zooplankton featuring a lower food preference for diazotrophs than for ordinary phytoplankton. We compare this paradigm with the idea that diazotrophs are more competitive under oligotrophic conditions, characterized by low (dissolved, particulate, organic and inorganic) phosphorous availability. Both paradigms are supported by observational evidence and lead to a similar good agreement to the most recent and advanced observation-based nitrogen fixation estimate in our ESM framework. Further, we illustrate that the similarity between the two paradigms breaks in a RCP 8.5 anthropogenic emission scenario. We conclude that a more advanced understanding of the ecological niche of diazotrophs is mandatory for assessing the cycling of essential nutrients, especially under changing environmental conditions. Our results call for more in-situ measurements of cyanobacteria biomass if major controls of nitrogen fixation in the oceans are to be dissected.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Deutsche Hydrographische Gesellschaft
    In:  Hydrographische Nachrichten, 10 (117). pp. 6-12.
    Publication Date: 2021-03-15
    Description: Present day multibeam echo sounder systems have the capability to record, display, and log backscattered signals from the water column (WCI = water column imaging) in addition to the echoes from the seafloor. This extra information can deliver interest-ing insights into marine life in the upper water layers but it produces a huge amount of data which requires tremendous time and effort for processing and interpretation. To tackle this, a semi-automated approach has been developed which is based on the conversion of the data into images and applying available image processing tech-niques. That way the WCI data acquired during eight expeditions in the Indian Ocean had been processed and the relative biomass abundance along an extended North-South profile had been determined. In addition, the WCI data displayed interesting observations of the diurnal migration of zooplankton and revealed an amazing cor-relation to nocturnal illumination.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-09
    Description: Seabed telecommunication cables can be damaged or broken by powerful seafloor flows of sediment (called turbidity currents), which may runout for hundreds of kilometres into the deep ocean. These flows have the potential to affect multiple cables near-simultaneously over very large areas, so it is more challenging to reroute traffic or repair the cables. However, cable-breaking turbidity currents that runout into the deep ocean were poorly understood, and thus hard to predict, as there were no detailed measurements from these flows in action. Here we present the first detailed measurements from such cable-breaking flows, using moored-sensors along the Congo Submarine Canyon offshore West Africa. These turbidity currents include the furthest travelled sediment flow (of any type) yet measured in action on Earth. The SAT-3 (South Atlantic 3) and WACs (West Africa Cable System) cables were broken on 14-16th January 2020 by a turbidity current that accelerated from 5 to 8 m/s, as it travelled for 〉 1,130 km from river estuary to deep-sea, although a branch of the WACs cable located closer to shore survived. The SAT-3 cable was broken again on 9th March 2020 due to a second turbidity current, this time slowing data transfer during regional coronavirus (COVID-2019) lockdown. These cables had not experienced faults due to natural causes in the previous 19 years. The two cable-breaking flows are associated with a major flood along the Congo River, which produced the highest discharge (72,000m3) recorded at Kinshasa since the early 1960s, and this flood peak reached the river mouth on ~30th December 2019. However, the cable-breaking turbidity currents occurred 2-10 weeks after the flood peak and coincided with unusually large spring tides. Thus, the large cable-breaking flows in 2020 are caused by a combination of a major river flood and tides; and this can provide a basis for predicting the likelihood of future cable-breaking flows. Older (1883-1937) cable breaks in the Congo Submarine Canyon occurred in temporal clusters, sometimes after one or more years of high river discharge. Increased hazards to cables may therefore persist for several years after one or more river floods, which cumulatively prime the river mouth for cable-breaking flows. The 14-16th January 2020 flow accelerated from 5 to 8 m/s with distance, such that the closest cable to shore did not break, whilst two cables further from shore were broken. The largest turbidity currents may increase in power with distance from shore, and are more likely to overspill from their channel in distal sites. Thus, for the largest and most infrequent turbidity currents, locations further from shore can face lower-frequency but higher-magnitude hazards, which may need to be factored into cable route planning. Observations off Taiwan in 2006-2015, and the 2020 events in the Congo Submarine Canyon, show that although multiple cables were broken by fast (〉 5 m/s) turbidity currents, some intervening cables survived. This indicates that local factors can determine whether a cable breaks or not. Repeat seabed surveys of the canyon-channel floor show that erosion during turbidity currents is patchy and concentrated around steeper areas (knickpoints) in the canyon profile, which may explain why only some cables break. If possible, cables should be routed away from knickpoints, also avoiding locations just up-canyon from knickpoints, as knickpoints move up-slope. This study provides key new insights into long runout cable-breaking turbidity currents, and the hazards they pose to seafloor telecommunication cables.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...