GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (50)
  • GFZ OAI  (50)
  • 2015-2019  (50)
  • 2017  (50)
Document type
  • Articles  (50)
Source
Language
Years
  • 2015-2019  (50)
Year
  • 1
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    IUGG Secretariat, GFZ German Research Centre for Geosciences
    Publication Date: 2020-02-12
    Description: These short, informal newsletters, issued every month on approximately the first day of the month, are intended to keep IUGG Member National Committees informed about the activities of the IUGG Associations and actions of the IUGG Secretariat. Special issues are sometimes distributed mid-month as deemed appropriate. The content usually includes a synopsis of scientific meetings during the following three months in order to illustrate the disciplinary and geographical diversity of IUGG interests. E-Journals may be forwarded to those who will benefit from the information.
    Language: English
    Type: info:eu-repo/semantics/other
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    GFZ German Research Centre for Geosciences
    Publication Date: 2020-02-12
    Description: This brochure is designed for scientists and engineers of upcoming drilling projects and explains the key steps and important challenges in planning and executing continental scientific drilling.
    Language: English
    Type: info:eu-repo/semantics/book
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-12
    Description: Tree ring patterns provide one of the best records of pre-instrumental environmental and climate variability. To date, tree ring chronologies were explored from woody plant species with C3 photosynthetic pathway, only. For the first time, we have studied wood growth periodicity and stable carbon isotope ratios of tree ring cellulose of a tree species with C4 photosynthesis and compared these data to those of a C3 tree species from the same habitat. The investigated species, Māmane (Sophora chrysophylla, C3) and 'Akoko (Euphorbia olowaluana, C4), are small endemic Hawaiian trees sampled from a rather dry, high elevation site on the ridge between Mauna Loa and Mauna Kea on the island of Hawai'i, USA. A relatively strong correlation in ring patterns was found within the 'Akoko and the Māmane individuals as well as with ring-width patterns from a nearby population of introduced Deodar cedar (Cedrus deodara) trees that serve as a reference. This correlation is evidence that the C4-plant 'Akoko may form annual growth rings. In addition to being the first demonstration of annual growth rings in a C4 plant, our findings have important implications for future climate change research in Hawai‘i. Unlike plants with a C3-photosynthetic pathway, C4 plants do not show strong discrimination against 13C during the photosynthetic fixation of CO2. Thus, 'Akoko may provide a record of past atmospheric CO2 concentration (CO2 atm) that can be compared with, and possibly supplement, the well-known Keeling curve produced by the nearby Mauna Loa Atmospheric Observatory. Regression analysis indicates a significant relationship between 'Akoko δ13C averages and atmospheric δ13C values. Furthermore, time series of tree ring data from both species provide long-term information on the response of C3 and C4-plants to increasing atmospheric CO2 concentrations and climate change. Trends in δ13C (intrinsic water-use efficiency, iWUE) of the two species show similar responses in that both demonstrate an increase in iWUE over time and with increased CO2 atm. 'Akoko and Māmane iWUE curves are different however, in that the 'Akoko (C4) curve is non-linear and a significant increase could only be observed post 1975, while the Māmane curve shows a distinct linearly increasing trend throughout the observation period.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-12
    Description: This study reviews and synthesises existing information generated within the SCOPSCO (Scientific Collaboration on Past Speciation Conditions in Lake Ohrid) deep drilling project. The four main aims of the project are to infer (i) the age and origin of Lake Ohrid (Former Yugoslav Republic of Macedonia/Republic of Albania), (ii) its regional seismotectonic history, (iii) volcanic activity and climate change in the central northern Mediterranean region, and (iv) the influence of major geological events on the evolution of its endemic species. The Ohrid basin formed by transtension during the Miocene, opened during the Pliocene and Pleistocene, and the lake established de novo in the still relatively narrow valley between 1.9 and 1.3 Ma. The lake history is recorded in a 584 m long sediment sequence, which was recovered within the framework of the International Continental Scientific Drilling Program (ICDP) from the central part (DEEP site) of the lake in spring 2013. To date, 54 tephra and cryptotephra horizons have been found in the upper 460 m of this sequence. Tephrochronology and tuning biogeochemical proxy data to orbital parameters revealed that the upper 247.8 m represent the last 637 kyr. The multi-proxy data set covering these 637 kyr indicates long-term variability. Some proxies show a change from generally cooler and wetter to drier and warmer glacial and interglacial periods around 300 ka. Short-term environmental change caused, for example, by tephra deposition or the climatic impact of millennial-scale Dansgaard–Oeschger and Heinrich events are superimposed on the long-term trends. Evolutionary studies on the extant fauna indicate that Lake Ohrid was not a refugial area for regional freshwater animals. This differs from the surrounding catchment, where the mountainous setting with relatively high water availability provided a refuge for temperate and montane trees during the relatively cold and dry glacial periods. Although Lake Ohrid experienced significant environmental change over the last 637 kyr, preliminary molecular data from extant microgastropod species do not indicate significant changes in diversification rate during this period. The reasons for this constant rate remain largely unknown, but a possible lack of environmentally induced extinction events in Lake Ohrid and/or the high resilience of the ecosystems may have played a role.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-02-12
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-02-12
    Description: Applying probabilistic methods to infrequent but devastating natural events is intrinsically challenging. For tsunami analyses, a suite of geophysical assessments should be in principle evaluated because of the different causes generating tsunamis (earthquakes, landslides, volcanic activity, meteorological events, and asteroid impacts) with varying mean recurrence rates. Probabilistic Tsunami Hazard Analyses (PTHAs) are conducted in different areas of the world at global, regional, and local scales with the aim of understanding tsunami hazard to inform tsunami risk reduction activities. PTHAs enhance knowledge of the potential tsunamigenic threat by estimating the probability of exceeding specific levels of tsunami intensity metrics (e.g., run-up or maximum inundation heights) within a certain period of time (exposure time) at given locations (target sites); these estimates can be summarized in hazard maps or hazard curves. This discussion presents a broad overview of PTHA, including (i) sources and mechanisms of tsunami generation, emphasizing the variety and complexity of the tsunami sources and their generation mechanisms, (ii) developments in modeling the propagation and impact of tsunami waves, and (iii) statistical procedures for tsunami hazard estimates that include the associated epistemic and aleatoric uncertainties. Key elements in understanding the potential tsunami hazard are discussed, in light of the rapid development of PTHA methods during the last decade and the globally distributed applications, including the importance of considering multiple sources, their relative intensities, probabilities of occurrence, and uncertainties in an integrated and consistent probabilistic framework.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-12
    Description: To improve our understanding of the role of phytoplankton for marine ecosystems and global biogeochemical cycles, information on the global distribution of major phytoplankton groups is essential. Although algorithms have been developed to assess phytoplankton diversity from space for over two decades, so far the application of these data sets has been limited. This scientific roadmap identifies user needs, summarizes the current state of the art, and pinpoints major gaps in long-term objectives to deliver space-derived phytoplankton diversity data that meets the user requirements. These major gaps in using ocean color to estimate phytoplankton community structure were identified as: (a) the mismatch between satellite, in situ and model data on phytoplankton composition, (b) the lack of quantitative uncertainty estimates provided with satellite data, (c) the spectral limitation of current sensors to enable the full exploitation of backscattered sunlight, and (d) the very limited applicability of satellite algorithms determining phytoplankton composition for regional, especially coastal or inland, waters. Recommendation for actions include but are not limited to: (i) an increased communication and round-robin exercises among and within the related expert groups, (ii) the launching of higher spectrally and spatially resolved sensors, (iii) the development of algorithms that exploit hyperspectral information, and of (iv) techniques to merge and synergistically use the various streams of continuous information on phytoplankton diversity from various satellite sensors' and in situ data to ensure long-term monitoring of phytoplankton composition.
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...