GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books  (3)
  • Journals
  • EBook Library  (3)
  • Adaptation (Biology) -- Polar regions.  (1)
  • Conservation biology.  (1)
  • Ecology--Computer simulation.  (1)
  • 1
    Online Resource
    Online Resource
    Berlin, Heidelberg :Springer Berlin / Heidelberg,
    Keywords: Adaptation (Biology) -- Polar regions. ; Electronic books.
    Description / Table of Contents: This book discusses organisms from bacteria and ciliates to higher vertebrates that live on polar continental shelves, slopes and deep sea. Discussion includes shrinking sea ice, and organisms adapted to cold climates that are now vulnerable to rapid warming.
    Type of Medium: Online Resource
    Pages: 1 online resource (257 pages)
    Edition: 1st ed.
    ISBN: 9783642273490
    Series Statement: From Pole to Pole Series
    DDC: 577.7220911
    Language: English
    Note: Intro -- Adaptation and Evolution in Marine Environments,Volume 2 -- Preface -- Letter from the Editorial Team -- Editorial Introduction -- Contents -- Contributors -- Part I Biodiversity Evolution and DataManagement -- 1 The Census of Antarctic Marine Life: The First Available Baseline for Antarctic Marine Biodiversity -- 1.1…History of the Project -- 1.1.1 The IPY Proposal -- 1.1.2 CAML Organization -- 1.1.3 CAML Scientific Targets -- 1.2…CAML Coordination Effort -- 1.2.1 CAML Main Expeditions -- 1.3…CAML Main Results -- 1.3.1 Distributional Records -- 1.3.2 Coordination with SCAR-MarBIN -- 1.3.3 DNA Barcoding -- 1.3.4 Published Results and Journal Special Issues -- 1.3.5 Workshop Organisation -- 1.4…The CAML Legacy -- 1.5…Concluding Remarks -- Acknowledgments -- 2 Connecting Biodiversity Data During the IPY: The Path Towards e-Polar Science -- 2.1…IPY and the Need for Data Sharing -- 2.2…The Antarctic Biodiversity Data Ecosystem -- 2.3…Findings and Motivations -- 2.4…The Biodiversity Data Paper Concept -- 2.5…The Future: Towards True Integration -- 2.6…Summary -- Acknowledgments -- References -- Part II Evolution: A Molecular Perspective -- 3 Southern Ocean Evolution in a Global Context: A Molecular Viewpoint -- 3.1…A Brief Climatic, Oceanographic and Tectonic History of the Southern Ocean -- 3.2…The Antarctic Circumpolar Current as a Barrier -- 3.3…Connectivity with Other Oceans -- 3.3.1 Southern Ocean: Source and Sink? -- 3.3.2 Difficulties in Dating Evolutionary Events to Relate Them to Climate Change -- 3.3.3 Cosmopolitan Species -- 3.3.4 Bipolar Species -- 3.4…Connectivity within the Southern Ocean -- 3.4.1 The Southern Ocean as a Biodiversity Hotspot -- 3.4.2 Cryptic Species -- 3.4.3 Eurybathy and Circumpolarity -- 3.5…Summary and Future Directions for Molecular Work -- Acknowledgments -- References. , 4 Pole-to-Pole Gene Flow in Protozoan Ciliates -- 4.1…Backgrounds -- 4.2…Ciliate Biodiversity at the Poles -- 4.3…Ciliate Mating Systems -- 4.4…Collection Sites and Polar Euplotes Species -- 4.5…Phylogenetic Relationships -- 4.6…Mating and Breeding Interactions -- 4.7…Preliminary Evidence of Pole-to-Pole Gene Flow in Nature -- 4.8…Concluding Remarks -- Acknowledgments -- References -- 5 Excess Oxygen in Polar Evolution: A Whole Organism Perspective -- 5.1…Living Conditions in Antarctic Marine Waters -- 5.2…A Unifying Concept: Oxygen and Capacity Limitation of Thermal Tolerance -- 5.3…Antarctic Challenges: Physiological Pathways of Adapting to Cold -- 5.3.1 Marine Crustaceans -- 5.3.2 At the Doorstep to Antarctica: Sub-Antarctic Stone Crabs -- 5.4…Perspectives -- Acknowledgments -- References -- 6 Catalysis and Protein Folding in Extreme Temperature Environments -- 6.1…Introduction -- 6.2…The Thermophiles -- 6.2.1 The Stability Problem -- 6.2.2 Activity and Stability -- 6.2.3 Folding at High Temperature -- 6.2.3.1 GroEL/GroES -- 6.2.3.2 DnaK/DnaJ/GrpE -- 6.2.3.3 The Trigger Factor -- 6.2.4 Partial Conclusion -- 6.3…The Psychrophiles -- 6.3.1 Enzyme Activity at Low Temperatures -- 6.3.2 Folding at Low Temperatures -- 6.4…Conclusions -- References -- Part III Monitoring and Management -- 7 Changing the Look on Seals from Pole to Pole with Satellite Technology -- 7.1…Satellites in Seal Research -- 7.2…Antarctic Seals -- 7.2.1 Crabeater Seal (Lobodon carcinophagus) -- 7.2.2 Ross Seal (Ommatophoca rossii) -- 7.2.3 Leopard Seal (Hydrurga leptonyx) -- 7.2.4 Spatial Segregation of Antarctic Phocid Seals -- 7.3…Arctic Seals -- 7.3.1 Harp Seal (Pagophilus groenlandicus) -- 7.3.1.1 Greenland Sea -- 7.3.1.2 White Sea -- 7.3.2 Hooded Seal (Cystophora cristata) -- 7.4…Adaptations to Diving -- References. , 8 Environmental Processes, Biodiversity and Changes in Admiralty Bay, King George Island, Antarctica -- 8.1…Introduction -- 8.2…Environmental Processes -- 8.2.1 Atmosphere -- 8.2.2 Terrestrial Environment -- 8.2.3 Marine Environment -- 8.2.3.1 Physical Setting -- 8.2.3.2 Hydrochemistry -- 8.2.3.3 Geophysics and Geochemistry -- 8.2.3.4 Marine Life -- 8.3…Concluding Remarks -- Acknowledgments -- References -- 9 Environmental Assessment of Admiralty Bay, King George Island, Antarctica -- 9.1…Introduction -- 9.2…Study Area -- 9.3…Environmental Assessment -- 9.3.1 Atmospheric Environment -- 9.3.2 Terrestrial Environment -- 9.3.3 Marine Environment -- 9.4…Monitoring Strategy Proposal -- 9.4.1 Terrestrial Environment Indicators -- 9.4.2 Marine Environment Indicators -- 9.5…Final Considerations -- Acknowledgments -- References -- 10 Anthropogenic Impacts on Sub-Antarctic and Antarctic Islands and the Adjacent Marine Environments -- 10.1…Introduction -- 10.2…Southern Ocean: Anthropogenic Pressures -- 10.2.1 Climate Change -- 10.2.2 Human Activity in Antarctica -- 10.2.3 Sealing, Whaling and Fisheries -- 10.2.4 Tourism -- 10.2.5 Invasive Species -- 10.2.6 Offshore Exploration, Military and Scientific Activities -- 10.3…Marine Environmental Management -- 10.4…Concluding Remarks -- Acknowledgments -- References -- 11 Polar Monitoring: Seabirds as Sentinels of Marine Ecosystems -- 11.1…The Global Importance of Polar Monitoring -- 11.2…Seabirds as Bio-Indicators -- 11.2.1 High Trophic Level Position -- 11.2.2 Diversity of Species and Food Web Interactions -- 11.2.3 Wide Sampling Range -- 11.2.4 Autonomous Environmental Samplers -- 11.3…Understanding Seabird Responses to Environmental Patterns Can Help Us Gauge the Adaptive Capacities to Future Climate Changes -- 11.3.1 Phenotypic Flexibility and Plasticity -- 11.3.1.1 Phenology -- 11.3.1.2 Foraging Strategies. , 11.3.1.3 Dispersal -- 11.3.2 Microevolutionary Processes -- 11.3.2.1 Selection -- 11.3.2.2 Genetic Drift -- 11.3.2.3 Genetic Flow -- 11.3.3 Integrating Phenotypic and Microevolutionary Approaches -- 11.4…Polar Life Observatories to Track Changes of Polar Ecosystems -- 11.4.1 What are Life Observatories? -- 11.4.1.1 Demographic Monitoring -- 11.4.1.2 Genetic Assessment and Monitoring -- 11.4.1.3 Bio-Monitoring Pollution -- 11.4.1.4 Foraging Monitoring -- 11.4.2 Innovative Technology Development and Ethics -- 11.5…Concluding Remarks -- Acknowledgments -- References -- Conclusions -- Perspectives and Implications.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Conservation biology. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (268 pages)
    Edition: 1st ed.
    ISBN: 9783319737959
    Series Statement: Topics in Geobiology Series ; v.47
    DDC: 560
    Language: English
    Note: Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- An Overview of Conservation Paleobiology -- 1 Defining and Establishing Conservation Paleobiologyas a Discipline -- 2 Data in Conservation Paleobiology -- 3 Looking Forward -- References -- Should Conservation Paleobiologists Save the World on Their Own Time? -- 1 Always Academicize? -- 2 To Advocate, or Not to Advocate -- 3 Speaking Honestly to Power -- 4 From Pure Scientist to Honest Broker -- 5 Keeping It Real -- 6 Overcoming the Fear Factor -- 7 Later Is Too Late -- References -- Conceptions of Long-Term Data Among Marine Conservation Biologists and What Conservation Paleobiologists Need to Know -- 1 What is "Long Term"? -- 2 Survey Implementation -- 3 Survey Responses and What They Mean for Conservation Paleobiologists -- Conservation Goals -- Long-Term Data -- Environmental Stressors -- Baselines -- Challenges -- 4 Takeaways for Conservation Paleobiologists -- 5 Moving Forward -- Appendix 1: Survey Questions -- Appendix 2: Survey Population Selection -- Appendix 3: Categorization of Responses -- References -- Effectively Connecting Conservation Paleobiological Research to Environmental Management: Examples from Greater Everglades' Restoration of Southwest Florida -- 1 Introduction -- 2 Defining the Problem -- 3 Ensuring Success as a Conservation Paleobiologist -- Developing Partnerships and Collaborative Teams -- Becoming or Engaging a Liaison -- Participate in "Management Collaboratives" -- Compose Technical Reports in Addition to Peer-Reviewed Journal Articles -- Present Your Findings to Stake Holder Groups -- Attend and Present at Environmental Science and Restoration Conferences -- Train our Students -- Reward Faculty for Conducting Community-Engaged Scholarship -- Promote and Reward Community Service for Work with Environmental Agencies and NGOs. , 4 Case Studies from Greater Everglades' Restoration -- Case Study 1: Water Management of the Caloosahatchee River -- Case Study 2: Picayune Strand Restoration Project -- 5 Conclusions -- References -- Using the Fossil Record to Establish a Baseline and Recommendations for Oyster Mitigation in the Mid-Atlantic U.S. -- 1 Introduction -- 2 Methods -- Pleistocene Localities -- Field and Museum Sampling -- Oyster Size and Abundance Data -- Reconstructing Paleotemperature and Salinity -- Modern and Colonial Data -- 3 Results -- Paleoenvironmental Reconstruction of Holland Point -- Paleotemperature -- Paleosalinity -- Shell Height -- Growth Rate -- 4 Discussion -- Comparing Pleistocene to Modern Oysters -- Environmental Controls on Oyster Size -- Human Factors Influencing Oyster Size -- Implications for Restoration -- A Role for Conservation Paleobiology -- 5 Conclusion -- References -- Coral Reefs in Crisis: The Reliability of Deep-Time Food Web Reconstructions as Analogs for the Present -- 1 Introduction -- Preserving the Past -- Endangered Coral Reefs -- 2 Fossilizing a Coral Reef -- Dietary Breadth -- Trophic Chains and Levels -- Modularity -- 3 Guild Structure and Diversity -- Identifying Guilds in a Food Web -- 4 Reconstructing the Community -- Diversity and Evenness -- Simulated Food Webs -- 5 Summary -- Appendix 1 -- Hypergeometric Variance -- Appendix 2 -- References -- Exploring the Species -Area Relationship Within a Paleontological Context, and the Implications for Modern Conservation Biology -- 1 Introduction -- 2 Geological Setting -- 3 Methods -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- Marine Refugia Past, Present, and Future: Lessons from Ancient Geologic Crises for Modern Marine Ecosystem Conservation -- 1 Introduction -- 2 Defining Refugium. , A Species Must Have a Range Contraction, Range Shift, or Migration in Order to Escape the Onset of Global Environmental Degradation That Would Otherwise Cause Extinction of That Species -- Range Shifts -- Habitat Shifts -- Isolated Geographic Refugia -- Life History Refugia -- Cryptic Refugia -- Harvest Refugia -- The Environmental Conditions of a Refugium Are Sufficiently Habitable Such That the Species' Population Remains Viable During Its Time in the Refugium -- A Species' Population Is Smaller in the Refugium Than Its Pre-environmental Perturbation Size -- The Species Remains in the Refugium for Many Generations -- After the Environmental Crisis Ends, the Species Recovers by Inhabiting Newly Re-opened Habitats, Either Through Population Expansion or Through Adaptive Radiation -- Otherwise, the Refugium Became a Trap -- 3 Identifying Ancient Refugia -- Fossil Data -- Phylogeographic Studies -- Species Distribution Models -- 4 Lessons from the Past for Identifying Future Refugia -- As the Marine Environment Continues to Change, Refugia May Need to Shift -- Refugial Size and Connectivity Can Enhance Survivorship, But Can Also Have Evolutionary Consequences -- Conditions Inside Refugia May Not Necessarily Remain Pristine, But Will Need to Be of Sufficiently Lower Magnitude of Total Stress to Maintain Viable Populations -- Beware the Refugial Trap -- 5 Future Directions for Investigating Ancient Refugia -- 6 Conclusions -- Appendix -- References -- Training Tomorrow's Conservation Paleobiologists -- 1 Business As Usual Is Not Enough -- 2 A Call to Action -- 3 Bridging the Gap -- Recommendation 1 -- Recommendation 2 -- Recommendation 3 -- Recommendation 4 -- Recommendation 5 -- Recommendation 6 -- 4 Okay, But… -- 5 In the Meantime… -- 6 A Bright Future -- References -- A Conceptual Map of Conservation Paleobiology: Visualizinga Discipline. , 1 Determining the Current State and Structure of Conservation Paleobiology -- 2 Mapping a Discipline -- Bibliographic Co-Authorship Visualizations -- Text Co-Occurrence Visualizations -- Bibliographic Co-Citation Visualizations -- Bibliographic Coupling Visualizations -- 3 Bibliometric Networks -- Bibliographic Co-Authorship Networks -- Text Co-Occurrence Networks -- Bibliographic Co-Citation Networks -- Bibliometric Coupling Networks -- 4 The Intellectual Landscape -- 5 Emerging Frontiers -- 6 Conclusions -- References -- Index.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cham :Springer International Publishing AG,
    Keywords: Ecology--Computer simulation. ; Electronic books.
    Type of Medium: Online Resource
    Pages: 1 online resource (474 pages)
    Edition: 3rd ed.
    ISBN: 9783319599281
    Language: English
    Note: Intro -- Contents -- Part I: Introduction -- Chapter 1: Ecological Informatics: An Introduction -- 1.1 Introduction -- 1.2 Data Management -- 1.3 Analysis and Synthesis -- 1.4 Communicating and Informing Decisions -- 1.5 Case Studies -- References -- Part II: Managing Ecological Data -- Chapter 2: Project Data Management Planning -- 2.1 Introduction -- 2.2 Components of a Data Management Plan -- 2.2.1 Context -- 2.2.2 Data Collection and Acquisition -- 2.2.3 Data Organization -- 2.2.4 Quality Assurance/Quality Control -- 2.2.5 Documentation -- 2.2.6 Storage and Preservation -- 2.2.7 Data Integration, Analysis, Modeling and Visualization -- 2.2.8 Data Policies -- Box 2.1 Recommended Data Citation Guidelines from Dryad Digital Repository (2016) -- 2.2.9 Communication and Dissemination of Research Outputs -- 2.2.10 Roles and Responsibilities -- 2.2.11 Budget -- 2.3 Developing and Using a Data Management Plan -- 2.3.1 Best Practices for Creating the Plan -- 2.3.2 Using the Plan -- 2.4 Conclusion -- References -- Chapter 3: Scientific Databases for Environmental Research -- 3.1 Introduction -- 3.2 Challenges for Scientific Databases -- 3.3 Examples of Scientific Databases -- 3.3.1 A Useful Analogy -- 3.3.2 Examples of Databases -- 3.4 Evolving a Database -- 3.4.1 A Strategy for Evolving a Database -- 3.4.2 Choosing Software -- 3.4.3 Database Management System (DBMS) Types -- 3.4.4 Data Models and Normalization -- 3.4.5 Advantages and Disadvantages of Using a DBMS -- 3.5 Interlinking Information Resources -- 3.5.1 A Database Related to the Human Genome Project -- 3.5.2 Environmental Databases for Sharing Data -- 3.5.3 Tools for Interlinking Information -- 3.6 Conclusions -- References -- Chapter 4: Quality Assurance and Quality Control (QA/QC) -- 4.1 Introduction -- 4.2 Quality Assurance -- 4.3 Quality Control -- 4.3.1 Data Filters. , 4.3.2 Graphical QC -- 4.3.3 Statistical QC -- 4.3.4 Treatment of Errors and Outliers -- 4.4 Implementing QA/QC -- 4.5 Conclusion -- References -- Chapter 5: Creating and Managing Metadata -- 5.1 Introduction -- 5.2 Metadata Descriptors -- 5.3 Metadata Standards -- 5.3.1 Dublin Core Metadata Initiative -- 5.3.2 Darwin Core -- 5.3.3 Ecological Metadata Language -- 5.3.4 GBIF Metadata Profile -- 5.3.5 FGDC CSDGM -- 5.3.6 ISO 19115 -- 5.4 Metadata Management -- 5.4.1 Metadata Tools -- 5.4.2 Best Practices for Creating and Managing Metadata -- 5.5 Conclusion -- References -- Chapter 6: Preserve: Protecting Data for Long-Term Use -- 6.1 Introduction -- 6.1.1 Preservation and Its Benefits -- 6.2 Practices for Preserving Ecological Data -- 6.2.1 Define the Contents of Your Data Files -- 6.2.2 Define the Parameters -- 6.2.3 Use Consistent Data Organization -- 6.2.4 Use Stable File Formats -- 6.2.5 Specify Spatial Information -- 6.2.6 Assign Descriptive File Names -- 6.2.7 Document Processing Information -- 6.2.8 Perform Quality Assurance -- 6.2.9 Provide Documentation -- 6.2.10 Protect Your Data -- 6.3 Prepare Your Data for Archival -- 6.4 What the Archive Does -- 6.4.1 Quality Assurance -- 6.4.2 Documentation and Metadata -- 6.4.3 Release of a Data Set -- 6.5 Data Users -- 6.6 Conclusions -- Appendix: Example R-Script for Processing Data -- References -- Chapter 7: Data Discovery -- 7.1 Introduction -- 7.2 Discovering Data Created by Others -- 7.2.1 Internet Search Engines -- 7.2.2 Data Repositories -- 7.2.3 Data Directories -- 7.2.4 Data Aggregators -- 7.3 Best Practices for Promoting Data Discovery and Reuse -- 7.3.1 Data Products -- Box 7.1 DataCite Recommendations for Data Citation -- Box 7.2 Dryad Digital Repository Data Citation Recommendations -- 7.3.2 Scientific Code -- References -- Chapter 8: Data Integration: Principles and Practice. , 8.1 Introduction -- 8.2 Essential Characteristics of All Data -- 8.3 Data as Records About Reality -- 8.4 Record-Keeping and Prose Documents as Data Integration Challenges -- 8.5 Formal Data Structures Facilitate Integration -- 8.5.1 Sets and Sequences -- 8.5.2 Matrices -- 8.5.3 Cross-classifications -- 8.5.4 Tables -- 8.5.5 Tables or Spreadsheets? -- 8.5.6 Tables or Cross-classifications? -- 8.5.7 Modeling True Tables -- 8.5.8 Need for Global Keys -- 8.6 Merging or JOINing Tables -- 8.6.1 APPENDING or Unioning -- 8.6.2 JOINs -- 8.7 The Datum Is the Atom -- 8.8 Conclusion -- References -- Part III: Analysis, Synthesis and Forecasting of Ecological Data -- Chapter 9: Inferential Modelling of Population Dynamics -- 9.1 Introduction -- 9.2 Inferential Modelling of Ecological Data by the Hybrid Evolutionary Algorithm -- 9.2.1 Population Dynamics of the Cyanobacterium Microcystis in Lake Müggelsee (Germany) -- 9.2.2 Meta-Analysis of Population Dynamics of the Cyanobacterium -- 9.3 Inferential Modelling of Ecological Data by Regression Trees -- 9.3.1 Induction Algorithm of Regression Trees -- 9.3.2 Pruning of Regression Trees -- 9.3.3 Diatom Populations in Lake Prespa (Mazedonia) -- 9.3.4 Vegetation Status of Selected Land Sites in Victoria (Australia) -- 9.4 Conclusions -- References -- Chapter 10: Process-Based Modeling of Nutrient Cycles and Food-Web Dynamics -- 10.1 Introduction -- 10.2 Zero- and One-Dimensional Lake Models -- 10.2.1 Zero-Dimensional Model for the Phosphorus Cycle in a Hypereutrophic Wetland -- 10.2.2 One-Dimensional Model for Nutrient Cycles and Plankton Dynamics in Lakes and Reservoirs -- 10.3 Multi-dimensional Lake Models -- 10.3.1 Horizontal and Vertical Transport of Nutrients and Organisms -- 10.3.2 Multi-segment Lake Model for Studying Dreissenids and Macrophytes -- 10.4 Concluding Remarks -- References. , Chapter 11: Uncertainty Analysis by Bayesian Inference -- 11.1 Does Uncertainty Really Matter? -- 11.2 Hamilton Harbour -- 11.2.1 Introduction -- 11.2.2 Eutrophication Modeling to Elucidate the Role of Lower Food Web -- 11.2.3 Nutrient Export Modeling for the Hamilton Harbour Watershed -- 11.3 Bay of Quinte -- 11.3.1 Introduction -- 11.3.2 Modeling the Relationship Among Watershed Physiography, Land Use Patterns, and Phosphorus Loading -- 11.3.3 Eutrophication Risk Assessment with Process-Based Modeling and Determination of Water Quality Criteria -- 11.4 Concluding Remarks -- References -- Chapter 12: Multivariate Data Analysis by Means of Self-Organizing Maps -- 12.1 Introduction -- 12.2 Properties of a Self-Organizing Map -- 12.3 Data Preparation -- 12.3.1 Missing Values and Outliers -- 12.3.2 Data Transformation -- 12.3.3 Distance Measure -- 12.4 Self-Organizing Maps -- 12.4.1 Architecture -- 12.4.2 Learning Algorithm -- Box 12.1 Sequential Learning Algorithm of an SOM -- 12.4.3 Evaluation of Trained Map Quality -- 12.4.4 Optimum Map Size -- 12.4.5 Clustering SOM Units -- 12.4.6 Evaluation of Input Variables -- 12.4.7 Relations Between Biological and Environmental Variables -- 12.5 Application in Ecological Modelling -- 12.6 SOM Tools -- 12.7 Example of SOM Application -- 12.8 Advantages and Disadvantages -- 12.8.1 Utility for Training and Information Extraction -- 12.8.2 Visualization and Recognition -- 12.8.3 Architecture Flexibility -- 12.8.4 Flexibility in Combining with Other Models -- 12.8.5 Constraints on Measure Consistency and Output Variability -- 12.8.6 Necessity of Sufficient Data -- 12.9 Future Development -- 12.10 Conclusions -- References -- Chapter 13: GIS-Based Data Synthesis and Visualization -- 13.1 Introduction -- 13.2 Synthesizing Species Distributions by Virtual Species. , 13.3 Cartograms to Synthesize and Visualize Sampling Effort Bias -- 13.4 Fuzzy Methods to Synthesize Species Distribution Uncertainty -- 13.5 Synthesis of Remote Sensing Data -- 13.5.1 Exploratory Data Analysis -- 13.5.1.1 Correlation of Remotely Sensed Bands by Hexagon Binning -- 13.5.1.2 Correlation Among Several Layers by Texture Measures -- 13.5.2 Fourier Transformations -- 13.6 Synthesizing Diversity Measurements from Space: The Case of Generalized Entropy -- 13.7 Neutral Landscapes -- 13.8 Conclusions -- References -- Part IV: Communicating and Informing Decisions -- Chapter 14: Communicating and Disseminating Research Findings -- 14.1 Introduction -- 14.2 Publishing Research Findings -- 14.2.1 Scholarly Publications -- 14.2.1.1 Journal Articles -- 14.2.1.2 Abstracts -- 14.2.1.3 Technical Reports -- 14.2.1.4 Books and Book Chapters -- 14.2.2 Newspaper and Magazine Articles for General Audiences -- 14.2.3 Designing Effective Figures -- 14.3 Communicating Research Findings Outside of Publications -- 14.3.1 Simple Steps for Giving an Effective Presentation -- 14.3.2 Best Practices for Slides -- 14.3.2.1 Slide Design -- 14.3.2.2 Text Slides -- 14.3.2.3 Graphics -- 14.3.3 Handouts -- 14.3.4 Posters -- 14.4 Communication in a Virtual Environment -- 14.4.1 Websites -- 14.4.2 Types and Uses of Different Social Media -- 14.4.3 Simple Steps for Effective Use of Social Media -- 14.4.4 Understanding Your Social Media Impact -- 14.5 Metrics and Altmetrics -- 14.6 Conclusion -- References -- Chapter 15: Operational Forecasting in Ecology by Inferential Models and Remote Sensing -- 15.1 Introduction -- 15.2 Early Warning of HABs Based on Inferential Modelling -- 15.2.1 Cyanobacterium Cylindrospermopsis in Lake Wivenhoe (Australia) -- 15.2.2 Cyanotoxin Microcystins in Lake Vaal (South Africa) -- 15.3 Early Warning of HABs Based on Remotely-Sensed Data. , 15.3.1 Earth Observation of Water Quality Parameters.
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...