GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (11)
  • PAPER CURRENT  (11)
  • Climatic Change  (6)
  • Journal of Soil Science and Environmental Management  (3)
  • Journal of Forest Research  (2)
  • 130331
  • 2251
  • 33945
  • 1
    Publication Date: 2011-11-28
    Description:    Climate change is an issue of great importance for human rights, public health, and socioeconomic equity because of its diverse consequences overall as well as its disproportionate impact on vulnerable and socially marginalized populations. Vulnerability to climate change is determined by a community’s ability to anticipate, cope with, resist, and recover from the impact of major weather events. Climate change will affect industrial and agricultural sectors, as well as transportation, health, and energy infrastructure. These shifts will have significant health and economic consequences for diverse communities throughout California. Without proactive policies to address these equity concerns, climate change will likely reinforce and amplify current as well as future socioeconomic disparities, leaving low-income, minority, and politically marginalized groups with fewer economic opportunities and more environmental and health burdens. This review explores the disproportionate impacts of climate change on vulnerable groups in California and investigates the costs and benefits of the climate change mitigation strategies specified for implementation in the California Global Warming Solutions Act of 2006 (AB 32). Lastly, knowledge gaps, future research priorities, and policy implications are identified. Content Type Journal Article Pages 1-19 DOI 10.1007/s10584-011-0310-7 Authors Seth B. Shonkoff, Department of Environmental Science, Policy, and Management, Division of Society and Environment, University of California, Berkeley, 137 Mulford Hall, MC 3144, Berkeley, CA 94720, USA Rachel Morello-Frosch, Department of Environmental Science, Policy and Management & School of Public Health, University of California, Berkeley, 137 Mulford Hall, MC 3114, Berkeley, CA 94720, USA Manuel Pastor, Departments of Geography and American Studies and Ethnicity, University of Southern California, 3620 S. Vermont Ave, KAP-462, Los Angeles, CA 90089-0255, USA James Sadd, Department of Environmental Science and Geology, Occidental College, 1600 Campus Rd., Los Angeles, CA 90041, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-05-18
    Description:    The tree species composition of a forested landscape may respond to climate change through two primary successional mechanisms: (1) colonization of suitable habitats and (2) competitive dynamics of established species. In this study, we assessed the relative importance of competition and colonization in forest landscape response (as measured by the forest type composition change) to global climatic change. Specifically, we simulated shifts in forest composition within the Boundary Waters Canoe Area of northern Minnesota during the period 2000–2400  AD . We coupled a forest ecosystem process model, PnET-II, and a spatially dynamic forest landscape model, LANDIS-II, to simulate landscape change. The relative ability of 13 tree species to colonize suitable habitat was represented by the probability of establishment or recruitment. The relative competitive ability was represented by the aboveground net primary production. Both competitive and colonization abilities changed over time in response to climatic change. Our results showed that, given only moderate-frequent windthrow (rotation period = 500 years) and fire disturbances (rotation period = 300 years), competition is relatively more important for the short-term (〈100 years) compositional response to climatic change. For longer-term forest landscape response (〉100 years), colonization became relatively more important. However, if more frequent fire disturbances were simulated, then colonization is the dominant process from the beginning of the simulations. Our results suggest that the disturbance regime will affect the relative strengths of successional drivers, the understanding of which is critical for future prediction of forest landscape response to global climatic change. Content Type Journal Article Pages 1-31 DOI 10.1007/s10584-011-0098-5 Authors Chonggang Xu, Division of Earth and Environmental Sciences, Los Alamos National Laboratory, Los Alamos, NM 87544, USA George Z. Gertner, Department of Natural Resources & Environmental Sciences, University of Illinois, W-523 Turner Hall, MC-047, 1102 South Goodwin Ave, Urbana, IL 61801, USA Robert M. Scheller, Environmental Science and Management, Portland State University, P.O. Box 751, Portland, OR 97207, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-04
    Description:    This paper explores two issues that have been receiving increasing attention in recent decades, climate change adaptation and natural disaster risk reduction. An examination of the similarities and differences between them reveals important linkages but also significant differences, including the spectrum of threats, time and spatial scales, the importance of local versus global processes, how risks are perceived, and degree of uncertainty. Using a risk perspective to analyze these issues, preferential strategies emerge related to choices of being proactive, reactive, or emphasizing risk management as opposed to the precautionary principle. The policy implications of this analysis are then explored, using Canada as a case study. Content Type Journal Article Pages 1-15 DOI 10.1007/s10584-011-0259-6 Authors David Etkin, Disaster and Emergency Management, Faculty of Liberal Arts and Professional Studies, York University, 4700 Keele St, Toronto, Ontario, Canada M3J 1P3 J. Medalye, Political Science, Faculty of Liberal Arts & Professional Studies, York University, Toronto, Ontario, Canada K. Higuchi, Faculty of Environmental Studies, York University, Toronto, Ontario, Canada Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-27
    Description:    Gross primary productivity (GPP) is a major component of carbon exchange between the atmosphere and terrestrial ecosystems and a key component of the terrestrial carbon cycle. Because of the large spatial heterogeneity and temporal dynamics of ecosystems, it is a challenge to estimate GPP accurately at global or regional scales. The 8-day MODerate resolution Imaging Spectroradiometer (MODIS) GPP product provides a near real time estimate of global GPP. However, previous studies indicated that MODIS GPP has large uncertainties, partly caused by biases in parameterization and forcing data. In this study, MODIS GPP was validated using GPP derived from the eddy covariance flux measurements at five typical forest sites in East Asia. The validation indicated that MODIS GPP was seriously underestimated in these forest ecosystems of East Asia, especially at northern sites. With observed meteorological data, fraction of photosynthetically active radiation absorbed by the plant canopy (fPAR) calculated using smoothed MODIS leaf area index, and optimized maximum light use efficiency ( ε max ) to force the MOD17 algorithm, the agreement between predicted GPP and tower-based GPP was significantly improved. The errors of MODIS GPP in these forest ecosystems of East Asia were mainly caused by uncertainties in ε max , followed by those in fPAR and meteorological data. The separation of canopy into sunlit and shaded leaves, for which GPP is individually calculated, can improve GPP simulation significantly. Content Type Journal Article Category Special Feature: Original Article Pages 1-10 DOI 10.1007/s10310-012-0369-7 Authors Mingzhu He, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, 901 Mengminwei Building, 22 Hankou Road, Nanjing, 210093 China Yanlian Zhou, School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210093 China Weimin Ju, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, 901 Mengminwei Building, 22 Hankou Road, Nanjing, 210093 China Jingming Chen, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, 901 Mengminwei Building, 22 Hankou Road, Nanjing, 210093 China Li Zhang, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China Shaoqiang Wang, Qianyanzhou Ecological Experimental Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101 China Nobuko Saigusa, Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan Ryuichi Hirata, Center for Global Environmental Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 Japan Shohei Murayama, Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba West, 16-1 Onogawa, Tsukuba, 305-8569 Japan Yibo Liu, Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, 901 Mengminwei Building, 22 Hankou Road, Nanjing, 210093 China Journal Journal of Forest Research Online ISSN 1610-7403 Print ISSN 1341-6979
    Print ISSN: 1341-6979
    Electronic ISSN: 1610-7403
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-09-24
    Description: Land degradation is a serious global problem. Pursuant to the alarming environmental degradation, the government and non-governmental organizations have implemented various land rehabilitation programs. Among this the predominant one is area closures, through tree-planting and physical conservation measures such as terracing. This study was designed to investigate the impact of integrating s...
    Electronic ISSN: 2141-2391
    Topics: Geosciences
    Published by Academic Journals
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-02-18
    Description: Despite the global interest to increase the worlds carbon stocks, most carbon sequestration strategies have largely depended on woody ecosystems whose production is threatened by the continuous shortage of land, hence the need to explore viable alternatives. The potential of bananas to sequester carbon has been reported but there is limited knowledge on the performance of various cultivars a...
    Electronic ISSN: 2141-2391
    Topics: Geosciences
    Published by Academic Journals
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Springer
    Publication Date: 2011-10-04
    Description:    Although policymaking in response to the climate change threat is essentially a challenge of risk management, most studies of the relation of emissions targets to desired climate outcomes are either deterministic or subject to a limited representation of the underlying uncertainties. Monte Carlo simulation, applied to the MIT Integrated Global System Model (an integrated economic and earth system model of intermediate complexity), is used to analyze the uncertain outcomes that flow from a set of century-scale emissions paths developed originally for a study by the U.S. Climate Change Science Program. The resulting uncertainty in temperature change and other impacts under these targets is used to illustrate three insights not obtainable from deterministic analyses: that the reduction of extreme temperature changes under emissions constraints is greater than the reduction in the median reduction; that the incremental gain from tighter constraints is not linear and depends on the target to be avoided; and that comparing median results across models can greatly understate the uncertainty in any single model. Content Type Journal Article Pages 1-15 DOI 10.1007/s10584-011-0260-0 Authors Mort Webster, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Andrei P. Sokolov, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA John M. Reilly, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Chris E. Forest, Department of Meteorology, Pennsylvania State University, University Park, PA, USA Sergey Paltsev, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Adam Schlosser, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Chien Wang, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA David Kicklighter, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA Marcus Sarofim, AAAS Science and Technology Policy Fellow, U.S. Environmental Protection Agency, Washington DC, USA Jerry Melillo, The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA Ronald G. Prinn, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Henry D. Jacoby, Joint Program on the Science and Policy of Global Change, Massachusetts Institute of Technology, Cambridge, MA, USA Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-08-30
    Description: Soil is one of the most essential natural resources. That is why soil fertility management is a major global concern. The current study in Delta sub-watershed was conducted to assess farmers perception on soil fertility status of small holder farming system under different land uses, Enset (Ensete ventricosum) farm, grazing and agricultural land. Both secondary and primary data were collecte...
    Electronic ISSN: 2141-2391
    Topics: Geosciences
    Published by Academic Journals
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-17
    Description:    Representative Concentration Pathway 6.0 (RCP6) is a pathway that describes trends in long-term, global emissions of greenhouse gases (GHGs), short-lived species, and land-use/land-cover change leading to a stabilisation of radiative forcing at 6.0 Watts per square meter (Wm −2 ) in the year 2100 without exceeding that value in prior years. Simulated with the Asia-Pacific Integrated Model (AIM), GHG emissions of RCP6 peak around 2060 and then decline through the rest of the century. The energy intensity improvement rates changes from 0.9% per year to 1.5% per year around 2060. Emissions are assumed to be reduced cost-effectively in any period through a global market for emissions permits. The exchange of CO 2 between the atmosphere and terrestrial ecosystem through photosynthesis and respiration are estimated with the ecosystem model. The regional emissions, except CO 2 and N 2 O, are downscaled to facilitate transfer to climate models. Content Type Journal Article Pages 1-18 DOI 10.1007/s10584-011-0150-5 Authors Toshihiko Masui, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Kenichi Matsumoto, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Yasuaki Hijioka, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Tsuguki Kinoshita, Ibaraki University, 3-21-1 Chuo, Ami, Ibaraki 300-0393, Japan Toru Nozawa, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Sawako Ishiwatari, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Etsushi Kato, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showa-machi, Kanazawa, Yokohama, Kanagawa 236-0001, Japan P. R. Shukla, Indian Institute of Management, Ahmedabad, Vastrapur, Ahmedabad, 380015 India Yoshiki Yamagata, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Mikiko Kainuma, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan Journal Climatic Change Online ISSN 1573-1480 Print ISSN 0165-0009
    Print ISSN: 0165-0009
    Electronic ISSN: 1573-1480
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-11-09
    Description:    A method for obtaining a relative deer population density index with low cost and effort is urgently needed in wildlife protection areas that need their own deer management guidelines. We recorded the number of deer sighted during our daily trips on forest roads by car in Ashiu Forest at Kyoto University, Japan, beginning in 2006. We used generalized additive mixed models (GAMMs) to estimate among-year trends in the number of deer sighted. We applied models for the total number of deer (TND), number of adults (NA), and number of fawns (NF) sighted, which included both current-year and 1-year-old fawns. Full models included the terms of year (2007, 2008, 2009, and 2010), weather (fine, cloudy, and rain/snow), and nonlinear effects of season (date) and time (time). The optimal GAMMs for TND, NA, and NF did not include the effect of weather but included those of time, date, and year. The detected among-year trends in deer population may be influenced by differences in snow environments among the years. The modeling of road count data using GAMM quantitatively determined among-year variation in the number of deer sighted. This trend was similar to that of the population density estimated using a block count survey conducted in Ashiu Forest. Content Type Journal Article Category Original Article Pages 1-7 DOI 10.1007/s10310-012-0379-5 Authors Inoue Mizuki, Laboratory of Forest Science, Faculty of Bioresource Sciences, Akita Prefectural University, Akita, 010-0195 Japan Shota Sakaguchi, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Keitaro Fukushima, Field Science Education and Research Center, Kyoto University, Kyoto, Japan Masaru Sakai, Graduate School of Global Environmental Studies, Kyoto University, Kyoto, Japan Atsushi Takayanagi, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Daisuke Fujiki, Institute of Natural and Environment Science, University of Hyogo, Tanba, Japan Michimasa Yamasaki, Laboratory of Forest Biology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan Journal Journal of Forest Research Online ISSN 1610-7403 Print ISSN 1341-6979
    Print ISSN: 1341-6979
    Electronic ISSN: 1610-7403
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...