GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Journals
  • Articles  (124)
  • Open Access-Papers  (124)
  • Wiley  (59)
  • Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung  (28)
  • Frontiers  (24)
  • Springer Nature  (13)
  • 1
    Publication Date: 2023-09-27
    Description: While environmental science, and ecology in particular, is working to provide better understanding to base sustainable decisions on, the way scientific understanding is developed can at times be detrimental to this cause. Locked-in debates are often unnecessarily polarised and can compromise any common goals of the opposing camps. The present paper is inspired by a resolved debate from an unrelated field of psychology where Nobel laureate David Kahneman and Garry Klein turned what seemed to be a locked-in debate into a constructive process for their fields. The present paper is also motivated by previous discourses regarding the role of thresholds in natural systems for management and governance, but its scope of analysis targets the scientific process within complex social-ecological systems in general. We identified four features of environmental science that appear to predispose for locked-in debates: (1) The strongly context-dependent behaviour of ecological systems. (2) The dominant role of single hypothesis testing. (3) The high prominence given to theory demonstration compared investigation. (4) The effect of urgent demands to inform and steer policy. This fertile ground is further cultivated by human psychological aspects as well as the structure of funding and publication systems.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Frontiers
    In:  EPIC3Frontiers in Marine Science, Frontiers, 10, pp. 1234776-1234776, ISSN: 2296-7745
    Publication Date: 2024-02-13
    Description: Collaborations between artists and ocean scientists are becoming increasingly frequent. As the UN Ocean Decade (2021-2030) stresses the importance of engaging with the public, there is a growing interest in using art as a tool for communication as well as for scientific exploration and experimentation. This mini-review charts the current academic research on art-science collaborations and the ocean, focusing on literature where artists and scientists work together to produce something based on scientific research. The study finds that these relationships are never apolitical, are complex and develop differently depending on each project. In sum the paper will highlight that although the academic literature is limited, its diversity has the potential to reach numerous academic disciplines and that focusing on process and engagement should be a direction for further research to help broaden the academic reach of these important oceanic knowledges.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-03-27
    Description: Widespread global declines in shellfish reefs (ecosystem-forming bivalves such as oysters and mussels) have led to growing interest in their restoration and protection. With restoration projects now occurring on four continents and in at least seven countries, global restoration guidelines for these ecosystems have been developed based on experience over the past two decades. The following key elements of the guidelines are outlined: (a) the case for shellfish reef resto- ration and securing financial resources; (b) planning, feasibility, and goal set- ting; (c) biosecurity and permitting; (d) restoration in practice; (e) scaling up from pilot to larger scale restoration, (f) monitoring, (g) restoration beyond oyster reefs (specifically mussels), and (h) successful communication for shell- fish reef restoration projects.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-07
    Description: Coastal water quality in urban cities is increasingly impacted by human activities such as agricultural runoff, sewage discharges, and poor sanitation. However, environmental factors controlling bacteria abundance remain poorly understood. The study employed multiple indicators to assess ten beach water qualities in Ghana during minor wet seasons. Environmental parameters (e.g. temperature, electrical conductivity, total dissolved solids) were measured in situ using the Horiba multiple parameter probe. Surface water samples were collected to measure total suspended solids, nutrients, and chlorophyll-a via standard methods and bacteria determination through membrane filtration. Environmental parameters measured showed no significant variation for the sample period. However, bacteria loads differ significantly (p = 0.024) among the beaches and influenced significantly by nitrate (55.3%, p = 0.02) and total dissolved solids (17.1%, p = 0.017). The baseline study detected an increased amount of total coliforms and faecal indicator bacteria (Escherichia coli and Enterococcus spp.) in beach waters along the coast of Ghana, suggesting faecal contamination, which can pose health risks. The mean ± standard deviations of bacteria loads in beach water are total coliforms (4.06 × 103 ± 4.16 × 103 CFU/100 mL), E. coli (7.06 × 102 ± 1.72 × 103 CFU/100 mL), and Enterococcus spp. (6.15 × 102 ± 1.75 × 103 CFU/100 mL). Evidence of pollution calls for public awareness to prevent ecological and health-related risks and policy reforms to control coastal water pollution. Future research should focus on identifying the sources of contamination in the tropical Atlantic region.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2023-06-21
    Description: The calving of A-68, the 5,800-km2, 1-trillion-ton iceberg shed from the Larsen C Ice Shelf in July 2017, is one of over 10 significant ice-shelf loss events in the past few decades resulting from rapid warming around the Antarctic Peninsula. The rapid thinning, retreat, and collapse of ice shelves along the Antarctic Peninsula are harbingers of warming effects around the entire continent. Ice shelves cover more than 1.5 million km2 and fringe 75% of Antarctica's coastline, delineating the primary connections between the Antarctic continent, the continental ice, and the Southern Ocean. Changes in Antarctic ice shelves bring dramatic and large-scale modifications to Southern Ocean ecosystems and continental ice movements, with global-scale implications. The thinning and rate of future ice-shelf demise is notoriously unpredictable, but models suggest increased shelf-melt and calving will become more common. To date, little is known about sub-ice-shelf ecosystems, and our understanding of ecosystem change following collapse and calving is predominantly based on responsive science once collapses have occurred. In this review, we outline what is known about (a) ice-shelf melt, volume loss, retreat, and calving, (b) ice-shelf-associated ecosystems through sub-ice, sediment-core, and pre-collapse and post-collapse studies, and (c) ecological responses in pelagic, sympagic, and benthic ecosystems. We then discuss major knowledge gaps and how science might address these gaps. This article is categorized under: Climate, Ecology, and Conservation 〉 Modeling Species and Community Interactions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , NonPeerReviewed
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2023-10-30
    Description: 〈jats:p〉In many of the Pacific Islands, local communities have long-held cultural and spiritual attachments to the sea, in particular to species and specific marine areas, processes, habitats, islands, and natural seabed formations. Traditional knowledge, customary marine management approaches and integrated relationships between biodiversity, ecosystems and local communities promote conservation and ensure that marine benefits are reaped in a holistic, sustainable and equitable manner. However, the interaction between local traditional knowledge, contemporary scientific approaches to marine resource management and specific regulatory frameworks has often been challenging. To some extent, the value of community practices and customary law, which have provided an incentive for regional cooperation and coordination around ocean governance, is acknowledged in several legal systems in the Pacific and a number of regional and international instruments, but this important connection can be further enhanced. In this article we present a science-based overview of the marine habitats that would be affected by deep seabed mining (DSM) along with an analysis of some traditional dimensions and cultural/societal aspects of marine resource management. We then assess whether the applicable legal frameworks at different levels attach sufficient importance to these traditional dimensions and to the human and societal aspects of seabed (mineral) resource management in the region. On the basis of this analysis, we identify best practices and formulate recommendations with regard to the current regulatory frameworks and seabed resource management approaches. Indeed, the policies and practices developed in the Pacific could well serve as a suitable model elsewhere to reconcile commercial, ecological, cultural and social values within the context of deep sea mineral exploitation in addition to sustaining the Human Well-being and Sustainable Livelihoods (HWSL) of the Pacific communities and the health of the Global Ocean.〈/jats:p〉
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-03-10
    Description: Global climate change affects marine fish through drivers such as ocean warming, acidification and oxygen depletion, causing changes in marine ecosystems and socioeconomic impacts. While experimental and observational results can inform about anticipated effects of different drivers, linking between these results and ecosystem-level changes requires quantitative integration of physiological and ecological processes into models to advance research and inform management. We give an overview of important physiological and ecological processes affected by environmental drivers. We then provide a review of available modelling approaches for marine fish, analysing their capacities for process-based integration of environmental drivers. Building on this, we propose approaches to advance important research questions. Examples of integration of environmental drivers exist for each model class. Recent extensions of modelling frameworks increase the potential for including detailed mechanisms and improving model projections. Experimental results on energy allocation, behaviour and physiological limitations will advance the understanding of organism-level trade-offs and thresholds in response to multiple drivers. More explicit representation of life cycles and biological traits can improve description of population dynamics and adaptation, and data on food web topology and feeding interactions help to detail the conditions for possible regime shifts. Identification of relevant processes will also benefit the coupling of different models to investigate spatial–temporal changes in stock productivity and integrated responses of social–ecological systems. Thus, a more process-informed foundation for models will promote the integration of experimental and observational results and increase the potential for model-based extrapolations into a future under changing environmental conditions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2023-10-04
    Description: The current policy and goals aimed to conserve biodiversity and manage biodiversity change are often formulated at the global scale. At smaller scales however, biodiversity change is more nuanced leading to a plethora of trends in different metrics of alpha diversity and temporal turnover. Therefore, large-scale policy targets do not translate easily into local to regional management decisions for biodiversity. Using long-term monitoring data from the Wadden Sea (Southern North Sea), joining structural equation models and general dissimilarity models enabled a better overview of the drivers of biodiversity change. Few commonalities emerged as birds, fish, macroinvertebrates, and phytoplankton differed in their response to certain drivers of change. These differences were additionally dependent upon the biodiversity aspect in question and which environmental data were recorded in each monitoring program. No single biodiversity metric or model sufficed to capture all ongoing change, which requires an explicitly multivariate approaches to biodiversity assessment in local ecosystem management.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-08-01
    Description: Zooplankton plays a major role in ocean food webs and biogeochemical cycles, and provides major ecosystem services as a main driver of the biological carbon pump and in sustaining fish communities. Zooplankton is also sensitive to its environment and reacts to its changes. To better understand the importance of zooplankton, and to inform prognostic models that try to represent them, spatially-resolved biomass estimates of key plankton taxa are desirable. In this study we predict, for the first time, the global biomass distribution of 19 zooplankton taxa (1-50 mm Equivalent Spherical Diameter) using observations with the Underwater Vision Profiler 5, a quantitative in situ imaging instrument. After classification of 466,872 organisms from more than 3,549 profiles (0-500 m) obtained between 2008 and 2019 throughout the globe, we estimated their individual biovolumes and converted them to biomass using taxa-specific conversion factors. We then associated these biomass estimates with climatologies of environmental variables (temperature, salinity, oxygen, etc.), to build habitat models using boosted regression trees. The results reveal maximal zooplankton biomass values around 60°N and 55°S as well as minimal values around the oceanic gyres. An increased zooplankton biomass is also predicted for the equator. Global integrated biomass (0-500 m) was estimated at 0.403 PgC. It was largely dominated by Copepoda (35.7%, mostly in polar regions), followed by Eumalacostraca (26.6%) Rhizaria (16.4%, mostly in the intertropical convergence zone). The machine learning approach used here is sensitive to the size of the training set and generates reliable predictions for abundant groups such as Copepoda (R2 ≈ 20-66%) but not for rare ones (Ctenophora, Cnidaria, R2 〈 5%). Still, this study offers a first protocol to estimate global, spatially resolved zooplankton biomass and community composition from in situ imaging observations of individual organisms. The underlying dataset covers a period of 10 years while approaches that rely on net samples utilized datasets gathered since the 1960s. Increased use of digital imaging approaches should enable us to obtain zooplankton biomass distribution estimates at basin to global scales in shorter time frames in the future.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2024-08-12
    Description: Among the highly diverse range of biobased polymers, polylactic acid (PLA) received vast attention in recent years due to its versatility for different applications and being the first commercially used polymer produced fromrenewable sources. Production and application of bio-based, biodegradable plastics will have one of the most crucial roles in tackling worldwide plastic pollution. Methods: This study is based on integrative ecotoxicological assessment of an innovative PLA-based agricultural mulch film (BPE-AMF-PLA), developed under the H2020 EU project “BIO-PLASTICS EUROPE”, towards organisms from different environmental compartments (soil, fresh water and marine) and from different trophic levels. Such comprehensive evaluation has an overarching goal to promote environmentally safe and sustainable use of these PLA-based plastics for agricultural and other potential applications. Results: Low-to-no phytotoxicity was obtained in both single-species standardized bioassays, and in a multi-species microcosms experiment. Earthworm reproduction was negatively affected at the lowest test concentration of 0.1% w/w of PLA-based plastic particles. For freshwater Daphnia, reproduction was found a sensitive endpoint, upon exposure to the leachates of the PLA-based plastic. However, the reported toxicity seemed to be caused by the presence of 2-methylnaphthalene, which can be avoided in the production process. As for the marine organisms, algae growth was inhibited with a LOEC = 25 g L−1, whereas test with brine shrimp only revealed stimulation of lipase upon digestion of micro-sized PLA-based plastics. Marine lugworm ingested pristine and UV pre-treated micro-sized plastics, yet without impact either on biological activity, or on the health of the test individuals. Discussion: The approach used in the present work will contribute to product development, environmental safety and sustainable applications of the PLA-based mulch film BPE-AMF-PLA, in the scope of project BIO-PLASTICS EUROPE. Furthermore, the tools and results obtained in this work are a relevant contribution in the framework development for additional support in the certification of the bio-based polymers, being aligned with European zero waste and non-toxicity strategies, certification, and regulations.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...