GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • GEOMAR Catalogue / E-Books
  • Articles  (18)
  • Open Access-Papers  (18)
  • ddc:600  (18)
  • 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
  • 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions
  • Electronic books.
  • Fishery policy.
  • Wuppertal : Wuppertal Institute for Climate, Environment and Energy  (10)
  • Abingdon : Routledge  (2)
  • Hamburg : Shell Deutschland Oil  (2)
  • Stockholm : European Council for an Energy Efficient Economy  (2)
  • Amman : Friedrich-Ebert-Stiftung  (1)
  • Beirut : Friedrich-Ebert-Stiftung  (1)
  • Cham :Springer International Publishing AG,
  • San Diego :Elsevier Science & Technology,
Document type
  • GEOMAR Catalogue / E-Books
  • Articles  (18)
Source
Keywords
  • ddc:600  (18)
  • 01. Atmosphere::01.01. Atmosphere::01.01.08. Instruments and techniques
  • 03. Hydrosphere::03.01. General::03.01.07. Physical and biogeochemical interactions
  • Electronic books.
  • Fishery policy.
  • +
Publisher
Language
  • 11
    Publication Date: 2024-01-18
    Description: A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy (RE) transition in the Middle East and North Africa (MENA) countries has been developed and applied to the country case of Jordan. It is designed to support the strategy development and to serve as a guide for decision-makers. The analysis shows that Jordan has taken essential steps towards a RE transition. According to the MENA energy transition phase model, Jordan can be classified as being in a transitional stage between the first phase, "Take-Off Renewables", and the second phase, "System Integration". However, fossil fuels continue to play a dominant role in the Jordanian energy sector, and the fluctuating world market prices for fossil fuels impact the economy. The expansion of domestically produced RE could significantly contribute to reducing Jordan's high imports of fossil fuels. This simultaneously increases energy security and reduces the trade deficit. To move towards a sustainable energy system, Jordan needs to embrace comprehensive flexibility measures. These include developing storage options, improving load management, upgrading the existing grid infrastructure, enhancing energy efficiency, exploring the electrification of end use sectors, and creating strong cooperation between stakeholders.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2022-08-17
    Description: A clear understanding of socio-technical interdependencies and a structured vision are prerequisites for fostering and steering a transition to a fully renewables-based energy system. To facilitate such understanding, a phase model for the renewable energy (RE) transition in the Middle East and North Africa (MENA) countries has been developed and applied to the country case of Lebanon. It is designed to support the strategy development and governance of the energy transition and to serve as a guide for decision makers. Lebanon's energy transition towards REs stands at a very early stage of the first transformation phase. Although abundant solar and wind energy potential does exist, the pathway towards a 100% renewables energy seems very challenging for Lebanon, as a consequence of highly unstable political conditions. The most pressing concern for Lebanon's electricity sector is combating the country's fiscal imbalance, while providing secure and reliable electricity supply. At the operational level, Lebanon's grid network requires significant investments to rebuild, retrofit, and expand the overall capacity and energy efficiency improvements. The need to strengthen the energy system after the political turmoil of the civil war is likely to offer several long-term opportunities, such as developing the economy, reducing environmental pollution, and increasing the energy security. In order to move forward into the first phase, Lebanon needs to improve the framework conditions for REs and implement its visions. It needs to support the market development in a realistic timeframe, where structural reforms represent the highest priority. The results of the analysis along the transition phase model towards 100% renewables energy are intended to stimulate and support the discussion on Lebanon's future energy system by providing an overarching guiding vision for the energy transition and the development of appropriate policies.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    Wuppertal : Wuppertal Institute for Climate, Environment and Energy | Wuppertal : Wuppertal Institut für Klima, Umwelt, Energie
    Publication Date: 2022-02-18
    Description: This brochure summarises key findings on energy solutions for the preparation and processing of food using local and renewable energy resources. More data, examples and information are available on the internet platform: www.wisions.net
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2022-02-18
    Description: On behalf of the Port of Rotterdam Authority, the Wuppertal Institute developed three possible pathways for a decarbonised port of Rotterdam until 2050. The port area is home to about 80 per cent of the Netherlands' petrochemical industry and significant power plant capacities. Consequently, the port of Rotterdam has the potential of being an international leader for the global energy transition, playing an important role when it comes to reducing CO2 emissions in order to deliver on the EU's long-term climate goals. The three decarbonisation scenarios all built on the increasing use of renewables (wind and solar power) and the adoption of the best available technologies (efficiency). The analysis focuses on power plants, refineries and the chemical industry, which together are responsible for more than 90 per cent of the port area's current CO2 emissions. The decarbonisation scenarios describe how CO2 emissions could be reduced by 75 to 98 per cent in 2050 (compared to 2015). Depending on the scenario, different mitigation strategies are relied upon, including electrification, closure of carbon cycles or carbon capture and storage (CCS). The study includes recommendations for local companies, the Port Authority as well as policy makers. In addition, the study includes a reference scenario, which makes it clear that a "business as usual" mentality will fall well short of contributing adequately to the EU's long-term climate goals.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2022-02-18
    Description: Technological innovations in energy-intensive industries (EIIs) have traditionally emerged within the boundaries of a specific sector. Now that these industries are facing the challenges of deep decarbonisation and a significant reduction in greenhouse gas (GHG) emissions is expected to be achieved across sectors, cross-industry collaboration is becoming increasingly relevant for low-carbon innovation. Accessing knowledge and other resources from other industrial sectors as well as co-developing innovative concepts around industrial symbiosis can be mutually beneficial in the search for fossil-free feedstocks and emissions reductions. In order to harness the potential of this type of innovation, it is important to understand not only the technical innovations themselves, but in particular the non-technical influencing factors that can drive the successful implementation of cross-industry collaborative innovation projects. The scientific state of the art does not provide much insight into this particular area of research. Therefore, this paper builds on three separate strands of innovation theory (cross-industry innovation, low-carbon innovation and innovation in EIIs) and takes an explorative case-study approach to identify key influencing factors for cross-industry collaboration for low-carbon innovation in EIIs. For this purpose, a broad empirical database built within the European joint research project REINVENT is analysed. The results from this project provide deep insights into the dynamics of low-carbon innovation projects of selected EIIs. Furthermore, the paper draws on insights from the research project SCI4Climate.NRW. This project serves as the scientific competence centre for IN4Climate.NRW, a unique initiative formed by politicians, industry and science to promote, among other activities, cross-industry collaboration for the implementation of a climate-neutral industry in the German federal state of North Rhine-Westphalia (NRW). Based on the results of the case study analysis, five key influencing factors are identified that drive the implementation of cross-industry collaboration for low-carbon innovation in EIIs: Cross-industry innovation projects benefit from institutionalised cross-industry exchange and professional project management and coordination. Identifying opportunities for regional integration as well as the mitigation of financial risk can also foster collaboration. Lastly, clear political framework conditions across industrial sectors are a key driver.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: conferenceobject , doc-type:conferenceObject
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-11-10
    Description: The book shows that the implementation of a sustainable energy strategy in Iran provides the opportunity for further economic and social development. In this context, the aim of the book is to provide some of the analyses needed to rethink the country’s energy strategy and to grasp the chances. The authors hope to make a contribution to the emerging and rapidly growing discussion on better energy alternatives and the respective opportunities for investment, innovation and modernization. The work presented in the book should provide ideas for such opportunities and create a vision of how this could contribute towards developing a more sustainable, efficient and prosperous future energy system for Iran. The book is based on long-term academic cooperation between Iranian researchers from several universities and the Iranian Energy Association and German researchers from the Wuppertal Institute, Büro Ö-quadrat and the University of Osnabrück. The book in hand is an important result of the collaboration. So its publication lends itself to taking stock of these twelve years of continued cooperation.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2022-02-18
    Description: This handbook was developed in the context of a joint project of the Wuppertal Institute and the Centre for Social Investment (CSI) called the System Innovation Lab. It combined sustainability transformation research insights with those of social innovation in order to design an on-the-job training and coaching that would enable participants to take a systemic approach to innovation and test what this means in their respective work settings. Focussing on the topic of sustainable energy futures in Europe it addressed young European leaders in government, the private sector and civil society working on energy issues and combined latest theoretical insights with novel innovation and leadership methods to spread the capacity and courage that transforming entire sectors requires.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: English
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-02-18
    Description: Wasserstoff ist ein Element, das viel Beachtung erhält: Es gilt als Basis einer nachhaltigen Energiezukunft. Allerdings ist Wasserstoff nicht allein, er konkurriert mit anderen Energien und ihren Nutzungstechnologien. Es stellt sich die Frage, ob Wasserstoff im globalen Energiesystem der Zukunft eine tragende Rolle spielen kann bzw. wird. Shell ist schon seit Jahrzehnten in der Wasserstoff-Forschung und -Entwicklung aktiv. In Zusammenarbeit mit dem Wuppertal Institut hat Shell jetzt eine Energieträger-Studie erstellt, die sich mit dem aktuellen Stand und den langfristigen Perspektiven der Wasserstoffnutzung, insbesondere für Energie- und Verkehrszwecke, befasst. Die Shell Wasserstoff-Studie diskutiert zunächst natürliche Vorkommen, Eigenschaften sowie historische Sichtweisen des Elements Wasserstoff. Anschließend werden aktuelle sowie künftige Verfahren und Ausgangsstoffe zur Erzeugung von Wasserstoff untersucht; dabei werden die Herstellungspfade in puncto Energieaufwand, Treibhausgasemissionen sowie Bereitstellungskosten miteinander verglichen. Weiterhin werden Fragen der Wasserstofflogistik untersucht. Dazu gehören zum einen heutige und künftige Speichermethoden, zum anderen die verschiedenen Transportoptionen und ihre jeweiligen Vorzüge einschließlich Fragen der Transportökonomie. Es folgt eine Darstellung der unterschiedlichen Nutzungsmöglichkeiten von Wasserstoff. Unterschieden wird zwischen stofflichen und energetischen Nutzungen. Die Analyse der energetischen Wasserstoffnutzung fokussiert auf die Brennstoffzelle - und nicht auf Wärmekraftprozesse. Auf der Anwenderseite werden energetische stationäre Anwendungen für die Back-up-Stromerzeugung sowie die Hausenergieversorgung - und diese einschließlich Wirtschaftlichkeit - untersucht. Den Schwerpunkt der Studie bilden (auto)mobile Wasserstoffanwendungen. Hierfür werden zunächst technologischer Stand und Perspektiven mobiler Anwendungen - von der Raumfahrt über Material Handling bis hin zum Pkw - erörtert. Anschließend wird die Wirtschaftlichkeit von wasserstoff-betriebenen Brennstoffzellen-Pkw (FCEV) mit Hilfe eines vereinfachten Autokosten-Vergleichs analysiert. Es schließt sich eine Diskussion des Aufbaus einer Wasserstoff-Tankstelleninfrastruktur für den Straßenverkehr an. Abschließend werden in Anlehnung an das ambitionierte 2DS-Wasserstoffszenario der Internationalen Energieagentur mögliche Auswirkungen von Brennstoffzellen-Pkw auf Kraftstoffverbrauch und Treibhausgasemissionen in ausgewählten Regionen bis 2050 diskutiert.
    Keywords: ddc:600
    Repository Name: Wuppertal Institut für Klima, Umwelt, Energie
    Language: German
    Type: report , doc-type:report
    Format: application/pdf
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...