GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,820)
  • Institute of Electrical and Electronics Engineers (IEEE)  (1,820)
  • 2015-2019  (1,820)
Document type
  • Articles  (1,820)
Source
Publisher
  • Institute of Electrical and Electronics Engineers (IEEE)  (1,820)
Years
Year
Topic
  • 1
    facet.materialart.
    Unknown
    Institute of Electrical and Electronics Engineers (IEEE)
    Publication Date: 2018-03-13
    Description: Provides a listing of current staff, committee members and society officers.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-13
    Description: Very high resolution optical remote sensing images (RSI) are often corrupted by noise. Among popular denoising methods in the state of the art, nonlocal Bayes (NLB) has led to successful results on real datasets, with high quality and reasonable computation time. However, its computation time remains prohibitive with respect to requirements of operational RSI pipelines, such as Pléiades one. In this paper, we tackle such an issue and introduce several optimizations aiming to significantly reduce the computation time required by NLB while keeping the best denoising quality (i.e., preserving edges, textures, and homogeneous areas). More precisely, our improvements consist of reducing multiple estimations of a same pixel with a masking technique and modifying the spatial extent of the similar patch search area (i.e., one of the main parts of nonlocal algorithms, such as NLB). We report several experiments and discuss optimal settings for these parameters, allowing a gain in computation time of 50% (resp. 15%) with optimized masking strategy (resp. spatial extent of the search area). When both contributions are combined, we achieve the same denoising quality as standard NLB while doubling the computation efficiency, the latter being increased fivefold if we accept a very small (lower than 0.1%) loss in quality.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-13
    Description: This paper addresses the issue of deceptive jamming against synthetic aperture radar (SAR) by using 1-bit sampling and time-varying threshold (TVT). With 1-bit intercepted SAR signal, the multipliers involved in a convolution is replaced by xnor gates, which considerably simplify the jamming signal generation. Moreover, the TVT is used for 1-bit quantization before retransmission to retain the relative amplitude information of the jamming signal. As a result, the proposed deceptive jamming schemes are superior to their conventional counterpart in terms of realization. Effects of harmonics and oversampling are analyzed to evaluate the performance degradations caused by the 1-bit sampling and TVT. Simulation results are provided to confirm the validity of the proposed schemes.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-13
    Description: A novel method that combines joint clusters and iterative graph cuts for ALS point cloud filtering is proposed in this paper. The method first extracts clusters of points from the raw point cloud, and then classifies ground points at the cluster level. There are four main steps, i.e., two-step point cloud clustering, critical point extraction, initial terrain determination, and terrain densification based on iterative graph cuts. Smooth clusters, rough clusters, and scattered points are extracted by the two-step clustering to depict the raw point cloud, which reduces the complexity of raw data and the judgment difficulty in the subsequent procedures. Critical points of each cluster are extracted, and the initial terrain is determined among the smooth clusters. Using the initial terrain and critical points, iterative graph cuts is performed to segment ground and nonground points at the cluster level. Experiments on ISPRS dataset with a low point density and Utah dataset with a moderate point density show that our approach provides a satisfactory trade off between Type I and Type II errors. Moreover, our method significantly outperforms progressive TIN densification based filters, and successfully controls Type II errors.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-13
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-13
    Description: Hyperspectral images (HSIs) are usually contaminated by various kinds of noise, such as stripes, deadlines, impulse noise, Gaussian noise, and so on, which significantly limits their subsequent application. In this paper, we model the stripes, deadlines, and impulse noise as sparse noise, and propose a unified mixed Gaussian noise and sparse noise removal framework named spatial–spectral total variation regularized local low-rank matrix recovery (LLRSSTV). The HSI is first divided into local overlapping patches, and rank-constrained low-rank matrix recovery is adopted to effectively separate the low-rank clean HSI patches from the sparse noise. Differing from the previous low-rank-based HSI denoising approaches, which process all the patches individually, a global spatial–spectral total variation regularized image reconstruction strategy is utilized to ensure the global spatial–spectral smoothness of the reconstructed image from the low-rank patches. In return, the globally reconstructed HSI further promotes the separation of the local low-rank components from the sparse noise. An augmented Lagrange multiplier method is adopted to solve the proposed LLRSSTV model, which simultaneously explores both the local low-rank property and the global spatial–spectral smoothness of the HSI. Both simulated and real HSI experiments were conducted to illustrate the advantage of the proposed method in HSI denoising, from visual/quantitative evaluations and time cost.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-13
    Description: Synthetic aperture radar (SAR) images display very high dynamic ranges. Man-made structures (like buildings or power towers) produce echoes that are several orders of magnitude stronger than echoes from diffusing areas (vegetated areas) or from smooth surfaces (e.g., roads). The impulse response of the SAR imaging system is, thus, clearly visible around the strongest targets: sidelobes spread over several pixels, masking the much weaker echoes from the background. To reduce the sidelobes of the impulse response, images are generally spectrally apodized, trading resolution for a reduction of the sidelobes. This apodization procedure (global or shift-variant) introduces spatial correlations in the speckle-dominated areas that complicates the design of estimation methods. This paper describes strategies to cancel sidelobes around point-like targets while preserving the spatial resolution and the statistics of speckle-dominated areas. An irregular sampling grid is built to compensate the subpixel shifts and turn cardinal sines into discrete Diracs. A statistically grounded approach for point-like target extraction is also introduced, thereby providing a decomposition of a single look complex image into two components: a speckle-dominated image and the point-like targets. This decomposition can be exploited to produce images with improved quality (full resolution and suppressed sidelobes) suitable both for visual inspection and further processing (multitemporal analysis, despeckling, interferometry).
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-13
    Description: The normalized difference vegetation index (NDVI) has been widely used in recent decades to monitor vegetation phenology. However, interference from snow cover introduces a high degree of uncertainty in interpreting NDVI fluctuation, because snow melting increases NDVI value in a manner similar to vegetation growth, leading to false detection. In this study, we present a novel methodology to smooth out data noise caused by snow in the third generation NDVI dataset from Global Inventory Modeling and Mapping Studies (GIMMS NDVI3g). This method is developed to replace small values with a pixel-specific snow-free background NDVI estimate, based on the assumption that the existence of snow decrease NDVI value and the patterns of NDVI fluctuation after snow melting and that after initiation of vegetation growth are different. Using the daily gross primary production (GPP) data of 111 site-years from FLUXNET in nine North American sites and the GIMMS NDVI3g dataset, we found that the green-up onset day (GUD) derived from raw NDVI is 42.2 days earlier than that of GPP, on average. This difference decreases to 4.7 days when applying the newly developed method. Additionally, the root mean square error and Spearman's correlation coefficient between NDVI-derived GUD and GPP-derived GUD are improved from 46.8 to 12.8 days and 0.22 to 0.64, respectively. Our results indicate that this method could effectively improve the ability to monitor the vegetation phenology by NDVI time series in areas with seasonal snow cover.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-13
    Description: Remote sensing air temperature mostly relies on linear algorithms that produce significantly variable results depending on various weather conditions. Recently, a novel nonlinear algorithm based on support vector machine (SVM) was reported with improved prediction accuracy by using multiple types of data including satellite and unmanned weather station, land coverage imagery, digital elevation model, astronomy, and calendar. To further improve the accuracy and consistence, this paper reports a selective arithmetic mean (SAM) approach for optimization of a previously reported SVM algorithm for area-wide near surface air temperature remote sensing using satellite and other types of data. Using Guangxi province as the study area, the results show that this new SAM approach significantly improved the overall retrieving quality over the previously reported simple arithmetic mean approach. The SAM approach has high tolerance to cloud, ground vegetation, and vertical and spatial spectrum variations, with superb prediction errors (absolute error, AE) and root mean square errors concentrated around 0.7 and 0.8 °C, respectively. The prediction error patterns with different atmosphere water content, enhanced vegetation index, and spatial spectrum were similar under all examined conditions. After SAM operations, the prediction error patterns showed a deep gap near a set error threshold ${boldsymbol delta} _{i}$ , especially near δ 0 (δ 0 ± 0.2) in every examined situation. SAM also produces significantly lower errors at AE ≥ δ 0 ≥ 0. The SVM model with SAM optimization minimizes the shortcomings of the classical temperature remote sensing technologies and is suitable for area-wide retrieving under natural conditions. Four modeli- g principles are summarized for building superb models.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-13
    Description: Continuous monitoring of topographic heights and changes in tidal flats is challenging, as it is generally difficult to observe topographic changes from on-site measurements or remote sensing techniques with high resolution and high accuracy. In this regard, an interferometric synthetic aperture radar (In-SAR) can be an effective tool to generate precise digital elevation models (DEMs) and detect large-scale topographic changes. Nevertheless, utilizing the In-SAR to detect topographic changes in tidal flats is not practical because the average slope of tidal flats is usually less than 5°, and the overall spatial and temporal variations of height are not significant. Therefore, the accuracy of In-SAR DEMs must be high to detect meaningful topographic changes. In order to minimize the error of In-SAR DEMs, height of ambiguity and random phase deviation of interferograms should be taken into account. These two factors are related to incidence angle and baseline. We simulated topographic error levels in tidal flats for a single-pass In-SAR system such as TanDEM-X. Phase error of interferograms was derived using the relationship between In-SAR coherence and the probability density function of phase deviation. Signal-to-noise ratio and geometric decorrelation were formulated by the function of baseline, incidence angle, and surface slope. The simulation results show that the height error of the DEM was minimized to lower than 15 cm when the baseline was 1500 m with an incidence angle of 29° in the TanDEM-X system. Finally, the validation of simulation results was carried out by comparing them with TanDEM-X DEM accuracies in tidal flats.
    Print ISSN: 1939-1404
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...