GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2015-2019  (35)
  • 2015  (35)
Document type
Publisher
Years
  • 2015-2019  (35)
Year
  • 1
    Publication Date: 2015-12-17
    Description: Perspective – synthetic DEMs: A vital underpinning for the quantitative future of landform analysis? Earth Surface Dynamics, 3, 587-598, 2015 Author(s): J. K. Hillier, G. Sofia, and S. J. Conway Physical processes, including anthropogenic feedbacks, sculpt planetary surfaces (e.g. Earth's). A fundamental tenet of geomorphology is that the shapes created, when combined with other measurements, can be used to understand those processes. Artificial or synthetic digital elevation models (DEMs) might be vital in progressing further with this endeavour in two ways. First, synthetic DEMs can be built (e.g. by directly using governing equations) to encapsulate the processes, making predictions from theory. A second, arguably underutilised, role is to perform checks on accuracy and robustness that we dub "synthetic tests". Specifically, synthetic DEMs can contain a priori known, idealised morphologies that numerical landscape evolution models, DEM-analysis algorithms, and even manual mapping can be assessed against. Some such tests, for instance examining inaccuracies caused by noise, are moderately commonly employed, whilst others are much less so. Derived morphological properties, including metrics and mapping (manual and automated), are required to establish whether or not conceptual models represent reality well, but at present their quality is typically weakly constrained (e.g. by mapper inter-comparison). Relatively rare examples illustrate how synthetic tests can make strong "absolute" statements about landform detection and quantification; for example, 84 % of valley heads in the real landscape are identified correctly. From our perspective, it is vital to verify such statistics quantifying the properties of landscapes as ultimately this is the link between physics-driven models of processes and morphological observations that allows quantitative hypotheses to be tested. As such the additional rigour possible with this second usage of synthetic DEMs feeds directly into a problem central to the validity of much of geomorphology. Thus, this note introduces synthetic tests and DEMs and then outlines a typology of synthetic DEMs along with their benefits, challenges, and future potential to provide constraints and insights. The aim is to discuss how we best proceed with uncertainty-aware landscape analysis to examine physical processes.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-12-16
    Description: Grain sorting in the morphological active layer of a braided river physical model Earth Surface Dynamics, 3, 577-585, 2015 Author(s): P. Leduc, P. Ashmore, and J. T. Gardner A physical scale model of a gravel-bed braided river was used to measure vertical grain size sorting in the morphological active layer aggregated over the width of the river. This vertical sorting is important for analyzing braided river sedimentology, for numerical modeling of braided river morphodynamics, and for measuring and predicting bedload transport rate. We define the morphological active layer as the bed material between the maximum and minimum bed elevations at a point over extended time periods sufficient for braiding processes to rework the river bed. The vertical extent of the active layer was measured using 40 hourly high-resolution DEMs (digital elevation models) of the model river bed. An image texture algorithm was used to map bed material grain size of each DEM. Analysis of the 40 DEMs and texture maps provides data on the geometry of the morphological active layer and variation in grain size in three dimensions. By normalizing active layer thickness and dividing into 10 sublayers, we show that all grain sizes occur with almost equal frequency in all sublayers. Occurrence of patches and strings of coarser (or finer) material relates to preservation of particular morpho-textural features within the active layer. For numerical modeling and bedload prediction, a morphological active layer that is fully mixed with respect to grain size is a reliable approximation.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Copernicus
    Publication Date: 2015-12-15
    Description: Estimating the volume of Alpine glacial lakes Earth Surface Dynamics, 3, 559-575, 2015 Author(s): S. J. Cook and D. J. Quincey Supraglacial, moraine-dammed and ice-dammed lakes represent a potential glacial lake outburst flood (GLOF) threat to downstream communities in many mountain regions. This has motivated the development of empirical relationships to predict lake volume given a measurement of lake surface area obtained from satellite imagery. Such relationships are based on the notion that lake depth, area and volume scale predictably. We critically evaluate the performance of these existing empirical relationships by examining a global database of glacial lake depths, areas and volumes. Results show that lake area and depth are not always well correlated ( r 2 = 0.38) and that although lake volume and area are well correlated ( r 2 = 0.91), and indeed are auto-correlated, there are distinct outliers in the data set. These outliers represent situations where it may not be appropriate to apply existing empirical relationships to predict lake volume and include growing supraglacial lakes, glaciers that recede into basins with complex overdeepened morphologies or that have been deepened by intense erosion and lakes formed where glaciers advance across and block a main trunk valley. We use the compiled data set to develop a conceptual model of how the volumes of supraglacial ponds and lakes, moraine-dammed lakes and ice-dammed lakes should be expected to evolve with increasing area. Although a large amount of bathymetric data exist for moraine-dammed and ice-dammed lakes, we suggest that further measurements of growing supraglacial ponds and lakes are needed to better understand their development.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-02
    Description: Block and boulder transport in Eastern Samar (Philippines) during Supertyphoon Haiyan Earth Surface Dynamics, 3, 543-558, 2015 Author(s): S. M. May, M. Engel, D. Brill, C. Cuadra, A. M. F. Lagmay, J. Santiago, J. K. Suarez, M. Reyes, and H. Brückner Fields of dislodged boulders and blocks record catastrophic coastal flooding during strong storms or tsunamis and play a pivotal role in coastal hazard assessment. Along the rocky carbonate coast of Eastern Samar (Philippines) we documented longshore transport of a block of 180 t and boulders (up to 23.5 t) shifted upslope to elevations of up to 10 m above mean lower low water level during Supertyphoon Haiyan on 8 November 2013. Initiation-of-motion approaches indicate that boulder dislocation occurred with flow velocities of 8.9–9.6 m s −1 , which significantly exceeds depth-averaged flow velocities of a local coupled hydrodynamic and wave model (Delft3D) of the typhoon with a maximum 〈 1.5 m s −1 . These results, in combination with recently published phase-resolving wave models, support the hypothesis that infragravity waves induced by the typhoon were responsible for the remarkable flooding pattern in Eastern Samar, which are not resolved in phase-averaged storm surge models. Our findings show that tsunamis and hydrodynamic conditions induced by tropical cyclones may shift boulders of similar size and, therefore, demand a careful re-evaluation of storm-related transport where it, based on the boulder's sheer size, has previously been ascribed to tsunamis.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-11-19
    Description: Bedload transport in a formerly glaciated mountain catchment constrained by particle tracking Earth Surface Dynamics, 3, 527-542, 2015 Author(s): A. Dell'Agnese, F. Brardinoni, M. Toro, L. Mao, M. Engel, and F. Comiti In formerly glaciated mountain settings, Pleistocene glaciations are responsible for profound spatial reorganization of the landscape structure. By imposing local channel slope and the degree of hillslope–channel connectivity, glacial macro-forms can exert first-order controls on the downstream strength and continuity of the coarse sediment cascade. To estimate quantitatively these controls we trace bedload transport for 3 years along Strimm Creek, Eastern Italian Alps. Specifically, we monitor the travel distance of 490 PIT-tagged particles ( b axis: 23–229 mm; weight: 83–6525 g) at two contrasting sites: Upper Strimm Creek (US; 4 km 2 ), which flows through a fluvially dominated hanging valley, and Lower Strimm Creek (LS; 7.5 km 2 ), located downstream, in a relict glacial trough where it experiences periodic colluvial sediment inputs from lateral tributaries. Tracer positioning within the streambed is periodically tracked in the field with a portable antenna in order to assess progressive travel distances, as well as the extent of the channel active layer, in relation to snowmelt and rainfall-driven peak flows. Interestingly, we show that tracer virtual velocities for selected inter-survey periods are independent of tracer weight at both study sites. Cumulatively, tracers in US have travelled across distances (i.e. inner quartiles) shorter than 2 m, which correspond to over 2 orders of magnitude less than what was observed in LS. These figures translate, after calculations of tracer inter-survey virtual velocities, into estimated bedload volumes equal to about 3 m 3 in US and 600 m 3 in LS, with most of the transport (75 % in US, and 93 % in LS) occurring during snowmelt. A similar contrast in bedload transport rates, even without considering the additional volumes of material mobilized by mass-wasting processes in LS, testifies the extent to which the glacial imprinting can still affect contemporary sediment transfer, and thus postglacial landscape evolution, in mountain drainage basins.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-10-21
    Description: Spatial distributions of earthquake-induced landslides and hillslope preconditioning in the northwest South Island, New Zealand Earth Surface Dynamics, 3, 501-525, 2015 Author(s): R. N. Parker, G. T. Hancox, D. N. Petley, C. I. Massey, A. L. Densmore, and N. J. Rosser Current models to explain regional-scale landslide events are not able to account for the possible effects of the legacy of previous earthquakes, which have triggered landslides in the past and are known to drive damage accumulation in brittle hillslope materials. This paper tests the hypothesis that spatial distributions of earthquake-induced landslides are determined by both the conditions at the time of the triggering earthquake (time-independent factors) and the legacy of past events (time-dependent factors). To explore this, we under\-take an analysis of failures triggered by the 1929 Buller and 1968 Inangahua earthquakes, in the northwest South Island of New Zealand. The spatial extents of landslides triggered by these events were in part coincident. Spatial distributions of earthquake-triggered landslides are determined by a combination of earthquake and local characteristics, which influence the dynamic response of hillslopes. To identify the influence of a legacy from past events, we first use logistic regression to control for the effects of time-independent variables. Through this analysis we find that seismic ground motion, hillslope gradient, lithology, and the effects of topographic amplification caused by ridge- and slope-scale topography exhibit a consistent influence on the spatial distribution of landslides in both earthquakes. We then assess whether variability unexplained by these variables may be attributed to the legacy of past events. Our results suggest that hillslopes in regions that experienced strong ground motions in 1929 were more likely to fail in 1968 than would be expected on the basis of time-independent factors alone. This effect is consistent with our hypothesis that unfailed hillslopes in the 1929 earthquake were weakened by damage accumulated during this earthquake and its associated aftershock sequence, which influenced the behaviour of the landscape in the 1968 earthquake. While our results are tentative, they suggest that the damage legacy of large earthquakes may persist in parts of the landscape for much longer than observed sub-decadal periods of post-seismic landslide activity and sediment evacuation. Consequently, a lack of knowledge of the damage state of hillslopes in a landscape potentially represents an important source of uncertainty when assessing landslide susceptibility. Constraining the damage history of hillslopes, through analysis of historical events, therefore provides a potential means of reducing this uncertainty.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-17
    Description: Topographic roughness as a signature of the emergence of bedrock in eroding landscapes Earth Surface Dynamics, 3, 483-499, 2015 Author(s): D. T. Milodowski, S. M. Mudd, and E. T. A. Mitchard Rock is exposed at the Earth surface when rates of erosion locally exceed rates of soil production. The thinning of soils and emergence of bedrock has implications spanning geomorphology, ecology and hydrology. Soil-mantled hillslopes are typically shaped by diffusion-like sediment transport processes that act to smooth topography through time, generating the familiar smooth, convex hillslope profiles that are common in low relief landscapes. Other processes, however, can roughen the landscape. Bedrock emergence can produce rough terrain; in this contribution we exploit the contrast between rough patches of bedrock outcrop and smooth, diffusion-dominated soil to detect bedrock outcrops. Specifically, we demonstrate that the local variability of surface normal vectors, measured from 1 m resolution airborne LiDAR data, can be used as a topographic signature to identify areas within landscapes where rock exposure is present. We then use this roughness metric to investigate the transition from soil-mantled to bedrock hillslopes as erosion rates increase in two transient landscapes, Bald Rock Basin, which drains into the Middle Fork Feather River, California, and Harrington Creek, a tributary of the Salmon River, Idaho. Rather than being abrupt, as predicted by traditional soil production models, in both cases the transition from fully soil-mantled to bedrock hillslopes is gradual and spatially heterogeneous, with rapidly eroding hillslopes supporting a patchwork of bedrock and soil that is well documented by changes in topographic roughness, highlighting the utility of this metric for testing hypotheses concerning the emergence of bedrock and adding to a growing body of evidence that indicates the persistence of partial soil mantles in steep, rapidly eroding landscapes.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-10-07
    Description: The periglacial engine of mountain erosion – Part 2: Modelling large-scale landscape evolution Earth Surface Dynamics, 3, 463-482, 2015 Author(s): D. L. Egholm, J. L. Andersen, M. F. Knudsen, J. D. Jansen, and S. B. Nielsen There is growing recognition of strong periglacial control on bedrock erosion in mountain landscapes, including the shaping of low-relief surfaces at high elevations (summit flats). But, as yet, the hypothesis that frost action was crucial to the assumed Late Cenozoic rise in erosion rates remains compelling and untested. Here we present a landscape evolution model incorporating two key periglacial processes – regolith production via frost cracking and sediment transport via frost creep – which together are harnessed to variations in temperature and the evolving thickness of sediment cover. Our computational experiments time-integrate the contribution of frost action to shaping mountain topography over million-year timescales, with the primary and highly reproducible outcome being the development of flattish or gently convex summit flats. A simple scaling of temperature to marine δ 18 O records spanning the past 14 Myr indicates that the highest summit flats in mid- to high-latitude mountains may have formed via frost action prior to the Quaternary. We suggest that deep cooling in the Quaternary accelerated mechanical weathering globally by significantly expanding the area subject to frost. Further, the inclusion of subglacial erosion alongside periglacial processes in our computational experiments points to alpine glaciers increasing the long-term efficiency of frost-driven erosion by steepening hillslopes.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-10-07
    Description: The periglacial engine of mountain erosion – Part 1: Rates of frost cracking and frost creep Earth Surface Dynamics, 3, 447-462, 2015 Author(s): J. L. Andersen, D. L. Egholm, M. F. Knudsen, J. D. Jansen, and S. B. Nielsen With accelerating climate cooling in the late Cenozoic, glacial and periglacial erosion became more widespread on the surface of the Earth. The resultant shift in erosion patterns significantly changed the large-scale morphology of many mountain ranges worldwide. Whereas the glacial fingerprint is easily distinguished by its characteristic fjords and U-shaped valleys, the periglacial fingerprint is more subtle but potentially prevails in some mid- to high-latitude landscapes. Previous models have advocated a frost-driven control on debris production at steep headwalls and glacial valley sides. Here we investigate the important role that periglacial processes also play in less steep parts of mountain landscapes. Understanding the influences of frost-driven processes in low-relief areas requires a focus on the consequences of an accreting soil mantle, which characterises such surfaces. We present a new model that quantifies two key physical processes: frost cracking and frost creep, as a function of both temperature and sediment thickness. Our results yield new insights into how climate and sediment transport properties combine to scale the intensity of periglacial processes. The thickness of the soil mantle strongly modulates the relation between climate and the intensity of mechanical weathering and sediment flux. Our results also point to an offset between the conditions that promote frost cracking and those that promote frost creep, indicating that a stable climate can provide optimal conditions for only one of those processes at a time. Finally, quantifying these relations also opens up the possibility of including periglacial processes in large-scale, long-term landscape evolution models, as demonstrated in a companion paper.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-09-02
    Description: Short Communication: Evidence for non-Gaussian distribution of rock weathering rates Earth Surface Dynamics, 3, 441-445, 2015 Author(s): S. Emmanuel The weathering of rocks influences the geochemistry of the oceans, the erosion of landscapes and man-made structures, and even the global climate. Although a high degree of variance is often observed in rate measurements, little is understood about the statistical characteristics of weathering rate distributions. This preliminary study demonstrates that the weathering rates of limestone, determined from measurements of an ancient eroded limestone edifice, can exhibit highly non-Gaussian behavior. While a Gaussian model produced a poor fit with the data, an alternative model – the generalized extreme value (GEV) framework – was capable of capturing the asymmetric long-tailed distribution, in good agreement with the measured curve. Furthermore, the non-Gaussian distribution of these field rates was found to have similar characteristics to the distribution of rates measured over much smaller microscopic regions of limestone surfaces in laboratory experiments. Such similar behavior could be indicative of analogous chemical and mechanical weathering processes acting over a range of spatial and temporal scales. Moreover, highly asymmetric rate distributions with high variance could be characteristic of rates not only in carbonate rocks, but also in other rock types, suggesting that the use of a small number of measurements to determine field weathering rates may be insufficient to fully characterize the range of rates in natural systems.
    Print ISSN: 2196-6311
    Electronic ISSN: 2196-632X
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...