GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (167)
  • 2015-2019  (167)
  • 2010-2014
  • 2015  (167)
Document type
  • Articles  (167)
Source
Publisher
Years
  • 2015-2019  (167)
  • 2010-2014
Year
Topic
  • 11
    Publication Date: 2015-12-12
    Description: To assess potential differences in stormwater runoff and sediment yield between plots of blue gum eucalyptus ( Eucalyptus globulus ) and coast live oak ( Quercus agrifolia ), we measured runoff, sediment yield, water repellency and soil moisture at eight paired sites. Eucalyptus has been associated in many studies worldwide with elevated soil water repellency and increased runoff, a likely contributor to soil erosion. To better understand these connections and their relationship to land cover, there is a need for studies employing either rainfall simulators or natural rainfall. Our research employs the latter, and was subject to contrasting hydrologic conditions in the two years of the study. Field work was conducted from October 2006 to February 2008 in the San Francisco Bay Area of central California. During the 2006–07 winter wet season, runoff was significantly higher under eucalypts than at paired oak sites, and in the early phases of the season was connected with elevated water repellency. However, sediment yield at all sites during the 2006–2007 hydrologic year was below the detection limit of the Gerlach sediment collection traps, possibly due to a limited wet season, and only appeared as suspended sediment captured in overflow buckets. Intensive rainfall events in January 2008 however created substantial runoff of sediment and litter with significantly greater yield at oak sites compared to paired eucalyptus sites. Water repellency likely had little effect on runoff during these events, and the primary cause of greater erosion under oaks is the thinner cover of leaf litter in comparison to eucalyptus. Our study is limited to undisturbed sites with intact litter cover that have not experienced recent wildfires; if disturbed, we would expect a different picture given the propensity for crown fires of eucalypts, enhancement of rainsplash erosion, and the likely greater potential for stream-connected sediment yield from post-disturbance soil erosion events. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2015-12-12
    Description: ABSTRACT Forests can decrease the risk of shallow landslides by mechanically reinforcing the soil and positively influencing its water balance. However, little is known about the effect of different forest structures on slope stability. In the study area in St. Antönien, Switzerland, we applied statistical prediction models and a physically-based model for spatial distribution of root reinforcement in order to quantify the influence of forest structure on slope stability. We designed a generalized linear regression model and a random forest model including variables describing forest structure along with terrain parameters for a set of landslide and control points facing similar slope angle and tree coverage. The root distribution measured at regular distances from seven trees in the same study area was used to calibrate a root distribution model. The root reinforcement was calculated as a function of tree dimension and distance from tree with the Root Bundle Model (RBMw). Based on the modelled values of root reinforcement, we introduced a proxy-variable for root reinforcement of the nearest tree using a gamma distribution. The results of the statistical analysis show that variables related to forest structure significantly influence landslide susceptibility along with terrain parameters. Significant effects were found for gap length, the distance to the nearest trees and the proxy-variable for root reinforcement of the nearest tree. Gaps longer than 20 m critically increased the susceptibility to landslides. Root reinforcement decreased with increasing distance form trees and is smaller in landslide plots compared to control plots. Furthermore, the influence of forest structure strongly depends on geomorphological and hydrological conditions. Our results enhance the quantitative knowledge about the influence of forest structure on root reinforcement and landslide susceptibility and support existing management recommendations for protection against gravitational natural hazards. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2015-12-12
    Description: ABSTRACT Experimental investigations have been done to analyze turbulent structures in curved sand bed channels with and without seepage. Measures of turbulent statistics such as time-averaged near-bed velocities, Reynolds stresses, thickness of roughness sublayer and shear velocities were found to increase with application of downward seepage. Turbulent kinetic energy and Reynolds normal stresses are increased in the streamwise direction under the action of downward seepage, causing bed particles to move rapidly. Analysis of bursting events shows that the relative contributions of all events (ejections, sweeps and interactions) increase throughout the boundary layer, and the thickness of the zone of dominance of sweep events, which are responsible for the bed material movement, increases in the case of downward seepage. The increased sediment transport rate due to downward seepage deforms the cross-sectional geometry of the channel made of erodible boundaries, which is caused by an increase in flow turbulence and an associated decrease in turbulent kinetic energy dissipation and turbulent diffusion. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2015-12-12
    Description: ABSTRACT Morphodynamic models are used by river practitioners and scientists to simulate geomorphic change in natural and artificial river channels. It has long been recognized that these models are sensitive to the choice of parameter values, and proper calibration is now common practice. This paper investigates the less recognized impact of the choice of the model itself. All morphodynamic models purport to simulate the same flow and sediment dynamics, often relying on the same governing equations. Yet in solving these equations, the models have different underlying assumptions, for example regarding spatial discretization, turbulence, sediment inflow, lateral friction, and bed load transport. These differences are not always considered by the average model user, who might expect similar predictions from calibrated models. Here, a series of numerical simulations in meandering channels was undertaken to test whether six morphodynamic codes (BASEMENT, CCHE-2D, NAYS, SSIIM-1, TELEMAC-2D and TELEMAC-3D) would yield significantly different equilibrium bathymetries if subjected to identical, initial flow conditions. We found that, despite producing moderately similar velocity patterns on a fixed-flat bed (regression coefficient r of 0.77 ± 0.20), the codes disagree substantially with respect to simulated bathymetries ( r  = 0.49 ± 0.31). We relate these discrepancies to differences in the codes' assumptions. Results were configuration specific, i.e. codes that perform well for a given channel configuration do not necessarily perform well with higher or lower sinuosity configurations. Finally, limited correlation is found between accuracy and code complexity; the inclusion of algorithms that explicitly account for the effects of local bed slope and channel curvature effects on transport magnitude and direction does not guarantee accuracy. The range of solutions obtained from the evaluated codes emphasises the need for carefully considering the choice of code. We recommend the creation of a central repository providing universal validation cases and documentation of recognized fluvial codes in commonly studied fluvial settings. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2015-12-12
    Description: ABSTRACT This paper investigates the processes involved in unconsolidated cliff recession using LiDAR surveys (2005, 2010 and 2013) and aerial photographs (1964–2012) at Pointe-au-Bouleau, on the north shore of the St. Lawrence Estuary, in Eastern Canada. The high lithostratigraphic variability of the sediments allowed for the identification of stratigraphic and lithological variables that explain the evolution of coastal cliff. Space-for-time substitution was also used to assess how lithostratigraphy controls the evolution of emerged glaciomarine coastal cliff over decadal to centennial time scales. This case study presents new quantitative data that contributes to a better understanding of the role of sediment architecture, stratigraphy and geomorphology on coastal evolution. The methodological approach includes the development of a new conceptual model suitable for identifying erosion on cliffed coastlines. The high spatial resolution methodology (〈5 cm) used herein demonstrates the need for further research using LiDAR data in order to quantify the processes involved in the evolution of coastal cliffs. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2015-12-12
    Description: ABSTRACT The underlying pre-existing paleotopography directly influences the loess deposition process and shapes the morphology of current loess landforms. An understanding of the controlling effects of the underlying paleotopography on loess deposition is critical to revealing the mechanism of loess-landform formation. However, these controlling effects exhibit spatial variation as well as uncertainty, depending on a study's data sources, methodologies and particular research scope. In this study, the geological history of a study area in the Loess Plateau of China that is subject to severe soil erosion is investigated using detailed geological information and digital elevation models (DEMs), and an underlying paleotopographic model of the area is constructed. Based on the models of modern terrain and paleotopography, we introduce a watershed hierarchy method to investigate the spatial variation of the loess-landform inheritance relationship and reveal the loess deposition process over different scales of drainage. The landform inheritance relationships were characterized using a terrain-relief change index (TRCI) and a bedrock terrain controllability index (BTCI). The results show that the TRCI appears to have an inverse relationship with increasing research scope, indicating that, compared with the paleotopography of the region, modern terrain has lower topographic relief over the entire area, while it has higher topographic relief in the smaller, local areas. The BTCI strengthens with increasing drainage area, which demonstrates a strong controlling effect over the entire study area, but a weak effect in the smaller, local areas because of the effect of paleotopography on modern terrain. The results provide for an understanding of the spatial variation of loess deposition in relation to paleotopography and contribute to the development of a process-based loess-landform evolution model. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2015-12-12
    Description: ABSTRACT Hillslope length is a fundamental attribute of landscapes, intrinsically linked to drainage density, landslide hazard, biogeochemical cycling and hillslope sediment transport. Existing methods to estimate catchment average hillslope lengths include inversion of drainage density or identification of a break in slope-area scaling, where the hillslope domain transitions into the fluvial domain. Here we implement a technique which models flow from point sources on hilltops across pixels in a digital elevation model (DEM), based on flow directions calculated using pixel aspect, until reaching the channel network, defined using recently developed channel extraction algorithms. Through comparisons between these measurement techniques, we show that estimating hillslope length from plots of topographic slope versus drainage area, or by inverting measures of drainage density, systematically underestimates hillslope length. In addition, hillslope lengths estimated by slope-area scaling breaks show large variations between catchments of similar morphology and area. We then use hillslope length – relief structure of landscapes to explore nature of sediment flux operating on a landscape. Distinct topographic forms are predicted for end-member sediment flux laws which constrain sediment transport on hillslopes as being linearly or nonlinearly dependent on hillslope gradient. Because our method extracts hillslope profiles originating from every ridgetop pixel in a DEM, we show that the resulting population of hillslope length – relief measurements can be used to differentiate between linear and nonlinear sediment transport laws in soil mantled landscapes. We find that across a broad range of sites across the continental United States, topography is consistent with a sediment flux law in which transport is nonlinearly proportional to topographic gradient. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2015-12-11
    Description: Soil formation results from opposite processes of bedrock weathering and erosion, whose balance may be altered by natural events and human activities, resulting in reduced soil depth and function. The impacts of vegetation on soil production and erosion and the feedbacks between soil formation and vegetation growth are only beginning to be explored quantitatively. Since plants require suitable soil environments, disturbed soil states may support less vegetation, leading to a downward spiral of increased erosion and decline in ecosystem function. We explore these feedbacks with a minimal model of the soil-plant system described by two coupled nonlinear differential equations, which include key feedbacks, such as plant-driven soil production and erosion inhibition. We show that suffciently strong positive plant-soil feedback can lead to a ‘humped’ soil production function, a necessary condition for soil depth bistability when erosion is assumed to vary monotonically with vegetation biomass. In bistable plant-soil systems, the sustainable soil condition engineered by plants is only accessible above a threshold vegetation biomass and occurs in environments where the high potential rate of erosion exerts a strong control on soil production and erosion. Vegetation removal for agriculture reduces the stabilizing effect of vegetation and lowers the system resilience, thereby increasing the likelihood of transition to a degraded soil state.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2015-12-10
    Description: ABSTRACT The Equotip surface hardness tester is becoming a popular method for rock and stone weathering research. In order to improve the reliability of Equotip for on-site application this study tested four porous limestones under laboratory conditions. The range of stone porosity was chosen to represent likely porosities found in weathered limestones in the field. We consider several key issues: (i) its suitability for soft and porous stones; (ii) the type of probe required for specific on-site applications; (iii) appropriate (non-parametrical) statistical methods for Equotip data; and (iv) sufficient sampling size. This study shows that the Equotip is suitable for soft and porous rock and stone. From the two tested probes the DL probe has some advantages over the D probe as it correlates slightly better with open porosity and allows for more controlled sampling in recessed areas and rough or curved areas. We show that appropriate sampling sizes and robust non-parametric methods for subsequent data evaluation can produce meaningful measures of rock surface hardness derived from the Equotip. The novel Hybrid dynamic hardness (Yilmaz, 2013), a combination of two measuring procedures (single impact method (SIM) and repeated impact method (RIM)), has been adapted and is based on median values to provide a more robust data evaluation. For the tested stones in this study we propose a sample size of 45 readings (for a confidence level of 95%). This approach can certainly be transferred to stone and rock with similar porosities and hardness. Our approach also allows for consistent comparisons to be made across a wide variety of studies in the fields of rock weathering and stone deterioration research. This article is protected by copyright. All rights reserved.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2015-12-06
    Description: We use three different approaches of optically stimulated luminescence (OSL) to study young fluvial sediments located at the main channels of one of the largest fluvial systems of North America: the Usumacinta–Grijalva. We use the Pulsed Photo-Stimulated Luminescence (PPSL) system also known as portable OSL reader, full OSL dating and profiling OSL dating in samples extracted from vertical sediment profiles ( n = 9) of riverbanks to detect changes in depositional rates of sediments and to obtain the age of the deposits. The results of the PPSL system show that the luminescence signals of vertical sediment profiles highly scattered from the top to the bottom contrast with the luminescence pattern observed on well–reset sequences of fluvial deposits where luminescence increase from the top to the bottom of the profile. The profiling and full OSL ages yielded large uncertainty values on their ages. Based on the inconsistencies observed in both ages and luminescence patterns of profiles we suggest that these fluvial deposits were not fully reset during their transport. As an explanation, we propose that in the Usumacinta and Grijalva rivers the cyclonic storms during the wet season promote the entrainment of large volumes of sediments due to high-erosional episodes around the basin resulting from hyper-concentrated and turbid flows. We conclude that the PPSL, profiling and full OSL dating of sediments are useful tools to quantify and to assess the depositional patterns in fluvial settings during the Holocene. These techniques also can yield information about sites where increases in the sediment load of rivers may produce poorly resetting of grains affecting the results of OSL dating.
    Print ISSN: 0197-9337
    Electronic ISSN: 1096-9837
    Topics: Geography , Geosciences
    Published by Wiley-Blackwell
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...