GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 2010-2014  (21)
  • 2012  (21)
Document type
Publisher
Years
  • 2010-2014  (21)
Year
  • 11
    Publication Date: 2012-10-27
    Description: Corrigendum to "Jet stream wind power as a renewable energy resource: little power, big impacts" published in Earth Syst. Dynam., 2, 201–212, 2011 Earth System Dynamics, 3, 137-137, 2012 Author(s): L. M. Miller, F. Gans, and A. Kleidon No abstract available.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-10-20
    Description: Volcano impacts on climate and biogeochemistry in a coupled carbon–climate model Earth System Dynamics, 3, 121-136, 2012 Author(s): D. Rothenberg, N. Mahowald, K. Lindsay, S. C. Doney, J. K. Moore, and P. Thornton Volcanic eruptions induce a dynamical response in the climate system characterized by short-term global reductions in both surface temperature and precipitation, as well as a response in biogeochemistry. The available observations of these responses to volcanic eruptions, such as to Pinatubo, provide a valuable method to compare against model simulations. Here, the Community Climate System Model Version 3 (CCSM3) reproduces the physical climate response to volcanic eruptions in a realistic way, as compared to direct observations from the 1991 eruption of Mount Pinatubo. The model's biogeochemical response to eruptions is smaller in magnitude than observed, but because of the lack of observations, it is not clear why or where the modeled carbon response is not strong enough. Comparison to other models suggests that this model response is much weaker over tropical land; however, the precipitation response in other models is not accurate, suggesting that other models could be getting the right response for the wrong reason. The underestimated carbon response in the model compared to observations could also be due to the ash and lava input of biogeochemically important species to the ocean, which are not included in the simulation. A statistically significant reduction in the simulated carbon dioxide growth rate is seen at the 90% level in the average of 12 large eruptions over the period 1870–2000, and the net uptake of carbon is primarily concentrated in the tropics, with large spatial variability. In addition, a method for computing the volcanic response in model output without using a control ensemble is tested against a traditional methodology using two separate ensembles of runs; the method is found to produce similar results in the global average. These results suggest that not only is simulating volcanoes a good test of coupled carbon–climate models, but also that this test can be performed without a control simulation in cases where it is not practical to run separate ensembles with and without volcanic eruptions.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2012-09-25
    Description: On the relation between Meridional Overturning Circulation and sea-level gradients in the Atlantic Earth System Dynamics, 3, 109-120, 2012 Author(s): H. Kienert and S. Rahmstorf On the basis of model simulations, we examine what information on changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC) can be extracted from associated changes in sea surface height (SSH), specifically from a broad Atlantic north–south gradient as has been suggested previously in the literature. Since a relation between AMOC and SSH changes can only be used as an AMOC diagnostic if it is valid independently of the specific forcing, we consider three different forcing types: increase of CO 2 concentration, freshwater fluxes to the northern convection sites and the modification of Southern Ocean winds. We concentrate on a timescale of 100 yr. We find approximately linear and numerically similar relations between a sea-level difference within the Atlantic and the AMOC for freshwater as well as wind forcing. However, the relation is more complex in response to atmospheric CO 2 increase, which precludes this sea-level difference as an AMOC diagnostic under climate change. Finally, we show qualitatively to what extent changes in SSH and AMOC strength, which are caused by simultaneous application of different forcings, correspond to the sum of the changes due to the individual forcings, a potential prerequisite for more complex SSH-based AMOC diagnostics.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-08-24
    Description: On the determination of the global cloud feedback from satellite measurements Earth System Dynamics, 3, 97-107, 2012 Author(s): T. Masters A detailed analysis is presented in order to determine the sensitivity of the estimated short-term cloud feedback to choices of temperature datasets, sources of top-of-atmosphere (TOA) clear-sky radiative flux data, and temporal averaging. It is shown that the results of a previous analysis, which suggested a likely positive value for the short-term cloud feedback, depended upon combining all-sky radiative fluxes from NASA's Clouds and Earth's Radiant Energy System (CERES) with reanalysis clear-sky forecast fluxes when determining the cloud radiative forcing (CRF). These results are contradicted when ΔCRF is derived using both all-sky and clear-sky measurements from CERES over the same period. The differences between the radiative flux data sources are thus explored, along with the potential problems in each. The largest discrepancy is found when including the first two years (2000–2002), and the diagnosed cloud feedback from each method is sensitive to the time period over which the regressions are run. Overall, there is little correlation between the changes in the ΔCRF and surface temperatures on these timescales, suggesting that the net effect of clouds varies during this time period quite apart from global temperature changes. Given the large uncertainties generated from this method, the limited data over this period are insufficient to rule out either the positive feedback present in most climate models or a strong negative cloud feedback.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2012-06-23
    Description: The influence of vegetation on the ITCZ and South Asian monsoon in HadCM3 Earth System Dynamics, 3, 87-96, 2012 Author(s): M. P. McCarthy, J. Sanjay, B. B. B. Booth, K. Krishna Kumar, and R. A. Betts The role of global vegetation on the large-scale tropical circulation is examined in the version 3 Hadley Centre climate model (HadCM3). Alternative representations of global vegetation cover from observations and a dynamic global vegetation model (DGVM) were used as the land-cover component for a number of HadCM3 experiments under a nominal present day climate state, and compared to the simulations using the standard land cover map of HadCM3. The alternative vegetation covers result in a large scale cooling of the Northern Hemisphere extra-tropics relative to the HadCM3 standard, resulting in a southward shift in the location of the inter-tropical convergence zone (ITCZ). A significant reduction in Indian monsoon precipitation is also found, which is related to a weakening of the South Asian monsoon circulation, broadly consistent with documented mechanisms relating to temperature and snow perturbations in the Northern Hemisphere extra-tropics in winter and spring, delaying the onset of the monsoon. The role of the Northern Hemisphere extra-tropics on tropical climate is demonstrated, with an additional representation of vegetation cover based on DGVM simulated changes in Northern Hemisphere vegetation from the end of the 21st Century. This experiment shows that through similar processes the simulated extra-tropical vegetation changes in the future contribute to a strengthening of the South Asian monsoon in this model. These findings provide renewed motivation to give careful consideration to the role of global scale vegetation feedbacks when looking at climate change, and its impact on the tropical circulation and South Asian monsoon in the latest generation of Earth System models.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2012-06-09
    Description: The problem of the second wind turbine – a note on a common but flawed wind power estimation method Earth System Dynamics, 3, 79-86, 2012 Author(s): F. Gans, L. M. Miller, and A. Kleidon Several recent wind power estimates suggest that this renewable energy resource can meet all of the current and future global energy demand with little impact on the atmosphere. These estimates are calculated using observed wind speeds in combination with specifications of wind turbine size and density to quantify the extractable wind power. However, this approach neglects the effects of momentum extraction by the turbines on the atmospheric flow that would have effects outside the turbine wake. Here we show with a simple momentum balance model of the atmospheric boundary layer that this common methodology to derive wind power potentials requires unrealistically high increases in the generation of kinetic energy by the atmosphere. This increase by an order of magnitude is needed to ensure momentum conservation in the atmospheric boundary layer. In the context of this simple model, we then compare the effect of three different assumptions regarding the boundary conditions at the top of the boundary layer, with prescribed hub height velocity, momentum transport, or kinetic energy transfer into the boundary layer. We then use simulations with an atmospheric general circulation model that explicitly simulate generation of kinetic energy with momentum conservation. These simulations show that the assumption of prescribed momentum import into the atmospheric boundary layer yields the most realistic behavior of the simple model, while the assumption of prescribed hub height velocity can clearly be disregarded. We also show that the assumptions yield similar estimates for extracted wind power when less than 10% of the kinetic energy flux in the boundary layer is extracted by the turbines. We conclude that the common method significantly overestimates wind power potentials by an order of magnitude in the limit of high wind power extraction. Ultimately, environmental constraints set the upper limit on wind power potential at larger scales rather than detailed engineering specifications of wind turbine design and placement.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2012-06-07
    Description: Solar irradiance reduction to counteract radiative forcing from a quadrupling of CO 2 : climate responses simulated by four earth system models Earth System Dynamics, 3, 63-78, 2012 Author(s): H. Schmidt, K. Alterskjær, D. Bou Karam, O. Boucher, A. Jones, J. E. Kristjánsson, U. Niemeier, M. Schulz, A. Aaheim, F. Benduhn, M. Lawrence, and C. Timmreck In this study we compare the response of four state-of-the-art Earth system models to climate engineering under scenario G1 of two model intercomparison projects: GeoMIP (Geoengineering Model Intercomparison Project) and IMPLICC (EU project "Implications and risks of engineering solar radiation to limit climate change"). In G1, the radiative forcing from an instantaneous quadrupling of the CO 2 concentration, starting from the preindustrial level, is balanced by a reduction of the solar constant. Model responses to the two counteracting forcings in G1 are compared to the preindustrial climate in terms of global means and regional patterns and their robustness. While the global mean surface air temperature in G1 remains almost unchanged compared to the control simulation, the meridional temperature gradient is reduced in all models. Another robust response is the global reduction of precipitation with strong effects in particular over North and South America and northern Eurasia. In comparison to the climate response to a quadrupling of CO 2 alone, the temperature responses are small in experiment G1. Precipitation responses are, however, in many regions of comparable magnitude but globally of opposite sign.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-05-23
    Description: Comparison of physically- and economically-based CO 2 -equivalences for methane Earth System Dynamics, 3, 49-61, 2012 Author(s): O. Boucher There is a controversy on the role methane (and other short-lived species) should play in climate mitigation policies, and there is no consensus on what an optimal methane CO 2 -equivalence should be. We revisit this question by discussing some aspects of physically-based (i.e. global- warming potential or GWP and global temperature change potential or GTP) and socio-economically-based climate metrics. To this effect we use a simplified global damage potential (GDP) that was introduced by earlier authors and investigate the uncertainties in the methane CO 2 -equivalence that arise from physical and socio-economic factors. The median value of the methane GDP comes out very close to the widely used methane 100-yr GWP because of various compensating effects. However, there is a large spread in possible methane CO 2 -equivalences from this metric (1–99% interval: 10.0–42.5; 5–95% interval: 12.5–38.0) that is essentially due to the choice in some socio-economic parameters (i.e. the damage cost function and the discount rate). The main factor differentiating the methane 100-yr GTP from the methane 100-yr GWP and the GDP is the fact that the former metric is an end-point metric, whereas the latter are cumulative metrics. There is some rationale for an increase in the methane CO 2 -equivalence in the future as global warming unfolds, as implied by a convex damage function in the case of the GDP metric. We also show that a methane CO 2 -equivalence based on a pulse emission is sufficient to inform multi-year climate policies and emissions reductions, as long as there is enough visibility on CO 2 prices and CO 2 -equivalences for the stakeholders.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2012-02-28
    Description: Downscaling climate change scenarios for apple pest and disease modeling in Switzerland Earth System Dynamics, 3, 33-47, 2012 Author(s): M. Hirschi, S. Stoeckli, M. Dubrovsky, C. Spirig, P. Calanca, M. W. Rotach, A. M. Fischer, B. Duffy, and J. Samietz As a consequence of current and projected climate change in temperate regions of Europe, agricultural pests and diseases are expected to occur more frequently and possibly to extend to previously non-affected regions. Given their economic and ecological relevance, detailed forecasting tools for various pests and diseases have been developed, which model their phenology, depending on actual weather conditions, and suggest management decisions on that basis. Assessing the future risk of pest-related damages requires future weather data at high temporal and spatial resolution. Here, we use a combined stochastic weather generator and re-sampling procedure for producing site-specific hourly weather series representing present and future (1980–2009 and 2045–2074 time periods) climate conditions in Switzerland. The climate change scenarios originate from the ENSEMBLES multi-model projections and provide probabilistic information on future regional changes in temperature and precipitation. Hourly weather series are produced by first generating daily weather data for these climate scenarios and then using a nearest neighbor re-sampling approach for creating realistic diurnal cycles. These hourly weather series are then used for modeling the impact of climate change on important life phases of the codling moth and on the number of predicted infection days of fire blight. Codling moth ( Cydia pomonella ) and fire blight ( Erwinia amylovora ) are two major pest and disease threats to apple, one of the most important commercial and rural crops across Europe. Results for the codling moth indicate a shift in the occurrence and duration of life phases relevant for pest control. In southern Switzerland, a 3rd generation per season occurs only very rarely under today's climate conditions but is projected to become normal in the 2045–2074 time period. While the potential risk for a 3rd generation is also significantly increasing in northern Switzerland (for most stations from roughly 1% on average today to over 60% in the future for the median climate change signal of the multi-model projections), the actual risk will critically depend on the pace of the adaptation of the codling moth with respect to the critical photoperiod. To control this additional generation, an intensification and prolongation of control measures (e.g. insecticides) will be required, implying an increasing risk of pesticide resistances. For fire blight, the projected changes in infection days are less certain due to uncertainties in the leaf wetness approximation and the simulation of the blooming period. Two compensating effects are projected, warmer temperatures favoring infections are balanced by a temperature-induced advancement of the blooming period, leading to no significant change in the number of infection days under future climate conditions for most stations.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2012-01-20
    Description: Vertical and horizontal processes in the global atmosphere and the maximum entropy production conjecture Earth System Dynamics, 3, 19-32, 2012 Author(s): S. Pascale, J. M. Gregory, M. H. P. Ambaum, R. Tailleux, and V. Lucarini The objective of this paper is to reconsider the Maximum Entropy Production conjecture (MEP) in the context of a very simple two-dimensional zonal-vertical climate model able to represent the total material entropy production due at the same time to both horizontal and vertical heat fluxes. MEP is applied first to a simple four-box model of climate which accounts for both horizontal and vertical material heat fluxes. It is shown that, under condition of fixed insolation, a MEP solution is found with reasonably realistic temperature and heat fluxes, thus generalising results from independent two-box horizontal or vertical models. It is also shown that the meridional and the vertical entropy production terms are independently involved in the maximisation and thus MEP can be applied to each subsystem with fixed boundary conditions. We then extend the four-box model by increasing its resolution, and compare it with GCM output. A MEP solution is found which is fairly realistic as far as the horizontal large scale organisation of the climate is concerned whereas the vertical structure looks to be unrealistic and presents seriously unstable features. This study suggest that the thermal meridional structure of the atmosphere is predicted fairly well by MEP once the insolation is given but the vertical structure of the atmosphere cannot be predicted satisfactorily by MEP unless constraints are imposed to represent the determination of longwave absorption by water vapour and clouds as a function of the state of the climate. Furthermore an order-of-magnitude estimate of contributions to the material entropy production due to horizontal and vertical processes within the climate system is provided by using two different methods. In both cases we found that approximately 40 mW m −2 K −1 of material entropy production is due to vertical heat transport and 5–7 mW m −2 K −1 to horizontal heat transport.
    Print ISSN: 2190-4979
    Electronic ISSN: 2190-4987
    Topics: Geosciences
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...