GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (1,332)
  • Springer  (1,332)
  • Pharmaceutical Research  (1,332)
  • 9069
Document type
  • Articles  (1,332)
Source
Publisher
  • Springer  (1,332)
Years
Journal
  • 11
    Publication Date: 2018-03-09
    Description: Purpose This study aimed to further explore the mechanisms behind the ability of certain linear polyamidoamines (PAAs) to transfect cells with minimal cytotoxicity. Methods The transfection efficiency of DNA complexed with a PAA of a molecular weight over 10 kDa or 25 kDa branched polyethyleneimine (BPEI) was compared in A549 cells using a luciferase reporter gene assay. The impact of endo/lysosomal escape on transgene expression was investigated by transfecting cells in presence of bafilomycin A1 or chloroquine. Cytotoxicity caused by the vectors was evaluated by measuring cell metabolic activity, lactate dehydrogenase release, formation of reactive oxygen species and changes in mitochondrial membrane potential. Results The luciferase activity was ~3-fold lower after transfection with PAA polyplexes than with BPEI complexes at the optimal polymer to nucleotide ratio (RU:Nt). However, in contrast to BPEI vectors, PAA polyplexes caused negligible cytotoxic effects. The transfection efficiency of PAA polyplexes was significantly reduced in presence of bafilomycin A1 while chloroquine enhanced or decreased transgene expression depending on the RU:Nt. Conclusions PAA polyplexes displayed a pH-dependent endo/lysosomal escape which was not associated with cytotoxic events, unlike observed with BPEI polyplexes. This is likely due to their greater interactions with biological membranes at acidic than neutral pH.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-03-09
    Description: Drug bioavailability to the developing brain is a major concern in the treatment of neonates and infants as well as pregnant and breast-feeding women. Central adverse drug reactions can have dramatic consequences for brain development, leading to major neurological impairment. Factors setting the cerebral bioavailability of drugs include protein-unbound drug concentration in plasma, local cerebral blood flow, permeability across blood-brain interfaces, binding to neural cells, volume of cerebral fluid compartments, and cerebrospinal fluid secretion rate. Most of these factors change during development, which will affect cerebral drug concentrations. Regarding the impact of blood-brain interfaces, the blood-brain barrier located at the cerebral endothelium and the blood-cerebrospinal fluid barrier located at the choroid plexus epithelium both display a tight phenotype early on in embryos. However, the developmental regulation of some multispecific efflux transporters that also limit the entry of numerous drugs into the brain through barrier cells is expected to favor drug penetration in the neonatal brain. Finally, drug cerebral bioavailability is likely to be affected following perinatal injuries that alter blood-brain interface properties. A thorough investigation of these mechanisms is mandatory for a better risk assessment of drug treatments in pregnant or breast-feeding women, and in neonate and pediatric patients.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-03-09
    Description: Purpose Sepantronium bromide (YM155) is a hydrophilic quaternary compound that cannot be administered orally due to its low oral bioavailability; it is furthermore rapidly eliminated via the kidneys. The current study aims at improving the pharmacokinetic profile of YM155 by its formulation in immunoliposomes that can achieve its enhanced delivery into tumor tissue and facilitate uptake in neuroblastoma cancer cells. Methods PEGylated YM155 loaded liposomes composed of DPPC, cholesterol and DSPE-PEG 2000 were prepared via passive film-hydration and extrusion method. Targeted (i.e. immuno-)liposomes were prepared by surface functionalization with SATA modified monoclonal anti-disialoganglioside (GD2) antibodies. Liposomes were characterized based on their size, charge, antibody coupling and YM155 encapsulation efficiency, and stability. Flow cytometry analysis and confocal microscopy were performed on IMR32 and KCNR neuroblastoma cell lines. The efficacy of developed formulations were assessed by in-vitro toxicity assays. A pilot pharmacokinetic analysis was performed to assess plasma circulation and tumor accumulation profiles of the developed liposomal formulations. Results YM155 loaded immunoliposomes had a size of 170 nm and zeta potential of −10 mV, with an antibody coupling efficiency of 60% andYM155 encapsulation efficiency of14%. Targeted and control liposomal formulations were found to have similar YM155 release rates in a release medium containing 50% serum. An in-vitro toxicity study on KCNR cells showed less toxicity for immunoliposomes as compared to free YM155. In-vivo pharmacokinetic evaluation of YM155 liposomes showed prolonged blood circulation and significantly increased half-lives of liposomal YM155 in tumor tissue, as compared to a bolus injection of free YM155. Conclusions YM155 loaded immunoliposomes were successfully formulated and characterized, and initial in-vivo results show their potential for improving the circulation time and tumor accumulation of YM155.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-03-06
    Description: Purpose Synthetic oligodeoxynucleotides (ODN) containing unmethylated CpG motifs were found to be able to target cells that express Toll-like receptor 9 to modulate innate and adaptive immune reactions. But their in vivo application in immunotherapy against cancer has not been successful. We attempted in this study to examine polyethylene-glycol (PEG) conjugated CpG ODNs and investigated their mechanism of immune modulation in anti-cancer therapy. Methods CpG-PEG conjugates with different PEG lengths were synthesized. In vitro activity as well as in vivo pharmacokinetics and pharmacodynamics properties were evaluated. Results CpG-PEG20Ks were found to be able to persist longer in circulation and activate various downstream effector cells. After intravenous injection, they resulted in higher levels of IL-12p70 in the circulation and lower M-MDSC infiltrates in the tumor microenvironment. Such activities were different from those of CpG ODNs without PEGylation, suggesting different PK-PD profiles systemically and locally. Conclusions Our data support the development of CpG-PEGs as a new therapeutic agent that can be systemically administered to modulate immune responses and the microenvironment in tumor tissues.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-03-06
    Description: Purpose Biometals such as zinc and copper have been shown to affect tight junction expression and subsequently blood-brain barrier (BBB) integrity. Whether these biometals also influence the expression and function of BBB transporters such as P-glycoprotein (P-gp) however is currently unknown. Methods Using the immortalised human cerebral microvascular endothelial (hCMEC/D3) cell line, an in-cell western assay (alongside western blotting) assessed relative P-gp expression after treatment with the metal ionophore clioquinol and biometals zinc and copper. The fluorescent P-gp substrate rhodamine-123 was employed to observe functional modulation, and inductively coupled plasma mass spectrometry (ICP-MS) provided information on biometal trafficking. Results A 24-h treatment with clioquinol, zinc and copper (0.5, 0.5 and 0.1 μM) induced a significant upregulation of P-gp (1.7-fold) assessed by in-cell western and this was confirmed with western blotting (1.8-fold increase). This same treatment resulted in a 23% decrease in rhodamine-123 accumulation over a 1 h incubation. ICP-MS demonstrated that while t8his combination treatment had no effect on intracellular zinc concentrations, the treatment significantly enhanced bioavailable copper (4.6-fold). Conclusions Enhanced delivery of copper to human brain microvascular endothelial cells is associated with enhanced expression and function of the important efflux pump P-gp, which may provide therapeutic opportunities for P-gp modulation.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-03-06
    Description: Purpose Studies were conducted to investigate dilute solutions of the monoclonal antibody (mAb) bevacizumab, mAb fragment ranibizumab and fusion protein aflibercept, develop common procedures for formulation of low concentration mAbs and identify a stabilizing formulation for anti-VEGF mAbs for use in in vitro permeation studies. Methods Excipient substitutions were screened. The most stabilizing formulation was chosen. Standard dilutions of bevacizumab, ranibizumab and aflibercept were prepared in PBS, manufacturer’s formulation, and the new formulation. Analysis was by SE-HPLC and ELISA. Stability, disaggregation and pre-exposure tests were studied. Results When Avastin, Lucentis and Eylea are diluted in PBS or manufacturer’s formulation, there is a 40–50% loss of monomer concentration and drug activity. A formulation containing 0.3% NaCl, 7.5% trehalose, 10 mM arginine and 0.04% Tween 80 at a pH of 6.78 stabilized the mAbs and minimized the drug loss. The formulation also disaggregates mAb aggregation while preserving the activity. Degassing the formulation increases recovery. Conclusions We developed a novel formulation that significantly stabilizes mAbs under unfavorable conditions such as low concentration or body temperature. The formulation allows for tissue permeation experimentation. The formulation also exhibits a disaggregating effect on mAbs, which can be applied to the manufacture/packaging of mAbs and bioassay reagents.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-03-06
    Description: Purpose To identify conditions allowing the use of cell-based models for studies of drug absorption during in vitro lipolysis of lipid-based formulations (LBFs). Methods Caco-2 was selected as the cell-based model system. Monolayer integrity was evaluated by measuring mannitol permeability after incubating Caco-2 cells in the presence of components available during lipolysis. Pure excipients and formulations representing the lipid formulation classification system (LFCS) were evaluated before and after digestion. Porcine mucin was evaluated for its capacity to protect the cell monolayer. Results Most undigested formulations were compatible with the cells (II-LC, IIIB-LC, and IV) although some needed mucin to protect against damaging effects (II-MC, IIIB-MC, I-LC, and IIIA-LC). The pancreatic extract commonly used in digestion studies was incompatible with the cells but the Caco-2 monolayers could withstand immobilized recombinant lipase. Upon digestion, long chain formulations caused more damage to Caco-2 cells than their undigested counterparts whereas medium chain formulations showed better tolerability after digestion. Conclusions Most LBFs and components thereof (undigested and digested) are compatible with Caco-2 cells. Pancreatic enzyme is not tolerated by the cells but immobilized lipase can be used in combination with the cell monolayer. Mucin is beneficial for critical formulations and digestion products.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2018-03-06
    Description: Purpose This study investigated in vitro transdermal delivery of methotrexate through dermatomed porcine ear and cadaver human skin treated with poly (D,L-lactide-co-glycolide) acid microneedles or fractional ablative laser. Methods PLGA microneedles were fabricated and characterized using scanning electron microscopy and mechanical assessment techniques. The integrity of treated skin was evaluated by rheometer, transepidermal water loss, and skin electrical resistance measurements. Successful skin microporation was demonstrated by dye binding, histology, pore uniformity, confocal laser microscopy, and DermaScan studies. In vitro permeation experiment was performed on Franz diffusion cells to determine drug delivery into and across the skin. Results Both physical treatments resulted in a considerable decrease in skin resistance and an increase in transepidermal water loss value. The laser-created microchannels were significantly larger than those formed by microneedles ( p  〈 0.05). An effective force of 41.04 ± 18.33 N was required to achieve 100% penetration efficiency of the microneedles. For both porcine ear and human skin, laser ablation provided a significantly higher methotrexate permeability into the receptor chamber and skin layers compared to microneedle poration and untreated skin ( p  〈 0.05). Conclusions Both fractional ablative laser and polymeric microneedles markedly enhanced in vitro transdermal delivery of methotrexate into and across skin. Graphical Abstract ᅟ
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-03-06
    Description: Purpose The study evaluates the use of new in vitro primary human cell-based organotypic small intestinal (SMI) microtissues for predicting intestinal drug absorption and drug-drug interaction. Methods The SMI microtissues were reconstructed using human intestinal fibroblasts and enterocytes cultured on a permeable support. To evaluate the suitability of the intestinal microtissues to model drug absorption, the permeability coefficients across the microtissues were determined for a panel of 11 benchmark drugs with known human absorption and Caco-2 permeability data. Drug-drug interactions were examined using efflux transporter substrates and inhibitors. Results The 3D–intestinal microtissues recapitulate the structural features and physiological barrier properties of the human small intestine. The microtissues also expressed drug transporters and metabolizing enzymes found on the intestinal wall. Functionally, the SMI microtissues were able to discriminate between low and high permeability drugs and correlated better with human absorption data (r 2  = 0.91) compared to Caco-2 cells (r 2  = 0.71). Finally, the functionality of efflux transporters was confirmed using efflux substrates and inhibitors which resulted in efflux ratios of 〉2.0 fold and by a decrease in efflux ratios following the addition of inhibitors. Conclusion The SMI microtissues appear to be a useful pre-clinical tool for predicting drug bioavailability of orally administered drugs.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-03-06
    Description: Despite substantial research carried out over the last decades, it remains difficult to understand the wide range of pharmacological effects of dopaminergic agents. The dopaminergic system is involved in several neurological disorders, such as Parkinson’s disease and schizophrenia. This complex system features multiple pathways implicated in emotion and cognition, psychomotor functions and endocrine control through activation of G protein-coupled dopamine receptors. This review focuses on the system-wide effects of dopaminergic agents on the multiple biochemical and endocrine pathways, in particular the biomarkers (i.e., indicators of a pharmacological process) that reflect these effects. Dopaminergic treatments developed over the last decades were found to be associated with numerous biochemical pathways in the brain, including the norepinephrine and the kynurenine pathway. Additionally, they have shown to affect peripheral systems, for example the hypothalamus-pituitary-adrenal (HPA) axis. Dopaminergic agents thus have a complex and broad pharmacological profile, rendering drug development challenging. Considering the complex system-wide pharmacological profile of dopaminergic agents, this review underlines the needs for systems pharmacology studies that include: i) proteomics and metabolomics analysis; ii) longitudinal data evaluation and mathematical modeling; iii) pharmacokinetics-based interpretation of drug effects; iv) simultaneous biomarker evaluation in the brain, the cerebrospinal fluid (CSF) and plasma; and v) specific attention to condition-dependent (e.g., disease) pharmacology. Such approach is considered essential to increase our understanding of central nervous system (CNS) drug effects and substantially improve CNS drug development.
    Print ISSN: 0724-8741
    Electronic ISSN: 1573-904X
    Topics: Chemistry and Pharmacology
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...