GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (156)
  • Springer  (156)
  • Petrology  (156)
  • 19821
Document type
  • Articles  (156)
Source
Publisher
  • Springer  (156)
Years
Journal
Topic
  • 11
    Publication Date: 2018-03-06
    Description: This paper reports the results of the first comprehensive petrological study of mafic enclaves widespread in the products of recent (2006–2012) eruptions of Bezymianny Volcano, Kamchatka. Four types of mafic enclaves were distinguished on the basis of the composition and morphology of minerals, P–T conditions of formation of mineral assemblages, and structural and textural characteristics of the rocks. Disequilibrium assemblages of mafic enclaves indicate a complex structure of the magmatic plumbing system of the volcano, including a shallow chamber with andesite–basaltic andesite magmas and a deep reservoir filled in part with plagioclase–hornblende cumulates and fed by basic magmas with mantle harzburgite xenoliths. The mafic enclaves were formed at different levels of the magmatic plumbing system of the volcano and correspond to different degrees of mixing of interacting magmas. The most abundant enclaves were formed during magma ascent from the deep reservoir (960–1040°C, 5–9 kbar) into the shallow andesitic chamber (940–980°C). Enclaves of plagioclase–hornblende cumulates from the basic magmas feeding the deep reservoir ( T 〉 1090°C and P 〉 9 kbar) are much less common.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2018-03-06
    Description: The system NaAlSi 3 O 8 (albite, Ab)-H 2 O offers a simple and tractable model to study the thermodynamics of the volatile constituent H 2 O in felsic magmas. Although it has been studied in this context for nearly 100 years, developing a comprehensive model that adequately describes the activity of H 2 O ( \({a_{{H_2}O}}\) ) in hydrous albite liquids and vapors has proven challenging. There are several problems. First, \({a_{{H_2}O}}\) in hydrous liquids relies on melting experiments in the presence of mixed fluids with reduced H 2 O activity (H 2 O-CO 2 and H 2 O-NaCl), but models of \({a_{{H_2}O}}\) in these coexisting fluids have lacked sufficient accuracy. Second, the role of the solubility of albite in H 2 O has been assumed to be negligible; however, it is important to take solubility into account at pressure ( P ) above 0.5 GPa because it becomes sufficiently high that H 2 O activity at the wet solidus is significantly less than 1. Third, the dry melting temperatures and wet solidus temperatures are inconsistent between the datasets. We address these issues by combining previous experimental work on T – \({X_{{H_2}O}}\) liquidus relations at 0.5–1.5 GPa with accurate activity formulations for H 2 O in mixed fluids (Aranovich and Newton, 1996, 1999). This yields isobaric T – \({a_{{H_2}O}}\) sections at 0.5, 0.7, 1.0 and 1.5 GPa. Data at each isobar were fit to cubic equations, which were used to derive the following equation for liquidus T as a function of \({a_{{H_2}O}}\) and P : $$T\left( {{a_{{H_2}O}},P} \right) = {m_0} + {m_1}{a_{{H_2}O}} + {m_2}a_{{H_2}O}^2 + {{m_3}a_{{H_2}O}^3}^\circ C$$ where T is °C, m 0 = 1119.6 + 112.3 P , m 1 =–856.5–578.9P, m 2 = 1004.1 + 952.9 P , and m 3 =–477.1–618.0 P . The equation is valid at 0.5 〈 P 〈 1.5 GPa and T solidus 〈 T 〈 T dry melting . The nonzero solubility of albite in pure H 2 O is incorporated into the model to give the correct liquidus H 2 O activity when truncating the model equation in the limiting case where T → T solidus at a given pressure. This model equation reproduces both the liquidus-H 2 O contents and activities from the solubility measurements of Makhluf et al. (2016) in the binary system Ab -H 2 O at 1.0 GPa. The model equation also accurately reproduces the liquidus H 2 O activities from Eggler and Kadik (1979) and Bohlen et al. (1982) when the Aranovich and Newton (1999) activity formulation for CO 2 –H 2 O mixed fluids is applied to their datasets.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2018-03-06
    Description: An important role of the early Neoproterozoic juvenile crustal growth in the formation of the Khangai group of Precambrian terranes in the Central Asian Orogenic Belt was demonstrated by the example of the Holbo Nur Zone of the Songin Block. Magmatic complexes of this zone correspond to different settings of the Early Neoproterozoic ocean: oceanic islands, mid-ocean ridges, intraoceanic island arcs, and turbidite basins. Obtained data on volcanic rocks and associated granitoids constrain a timing of the island-arc magmatic complexes, at least within the interval of 888–859 Ma. The comparison of structures of the Songino and Tarbagatai blocks of the Khangai group of terranes showed that they share many common features in their geology and evolution and may be united into the single Songino–Tarbagatai terrane. This terrane was formed owing to the Early Neoproterozoic (~800 Ma) accretion of the ocean island, spreading, island-arc, and turbidite complexes of the oceanic plate to a stable continental massif represented by the Early Neoproterozoic Ider Complex of the Tarbagatai Block. The involvement of the Dzabkhan terrane into a Khangai collage of terranes is constrained between the formation of the volcanic rocks of the Dzabkhan Formation (~770–755 Ma), which are unknown in the Songino–Tarbagatai terrane, and the Tsagaan-Olom carbonate cover (~630 Ma), overlying both the Dzabkhan and Songino–Tarbagatai terranes. It was proposed that the formation of the Precambrian terranes of the Central Asian Orogenic Belt began from the Early Neoproterozoic accretion to the Rodinia supercontinent. The fragmentation of the latter above a mantle superplume at the end of the Early Neoproterozoic spanned also the newly formed fold area. This led to the formation of terranes, which included both fragments of the Paleoproterozoic craton and Early Neoproterozoic structures. Subsequent amalgamation of these Precambrian crustal fragments into composite terranes possibly occurred at the end of the early Baikalian tectonic phase.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2018-03-06
    Description: The geochemical and zircon geochronological (U-Pb, SHRIMP-II) study of Mesoarchean gabbros of the South Vygozersky and Kamennoozersky greenstone structures of Central Karelia made it possible to distinguish four gabbro types: (1) Fe–Ti gabbro, 2869 ± 12 Ma, (2) gabbro compositionally close to tholeiitic basalts, 2857 ± 7 Ma, (3) leucogbabbro, 2840 ± 5 Ma; and (4) melanogabbro, 2818 ± 14 Ma. From the early to late gabbros, the rocks are depleted in Ti, Fe, V, Y, Zr, Nb, Hf, REE and enriched in Mg, Ca, Cr, Ni. According to the systematics (Condie, 2005), the Nb/Y, Zr/Y, Zr/Nb ratios in the studied Late Archean gabbros are close to those of primitive mantle, while the gabbros in composition are similar to those of plumederived ocean-plateau basalts. Their magma sources were derived from different mantle reservoirs. The leucogabbro and melanogabbro with similar εNd = +4 were derived from a depleted mantle source (DM). The gabbro close in composition to tholeiitic basalts and having the elevated positive ε Nd (+4.9) was derived from a strongly depleted mantle source. Insignificant admixture of crustal material or lithospheric mantle is inferred in a source of the Fe–Ti gabbro (with lowest ε Nd = +2.1).
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2018-03-06
    Description: We studied the petrography, mineralogy, and geochemistry of the Paleoproterozoic (2.06 Ga) granites of the Katugin massif (Stanovoy suture zone), which hosts the combined rare-metal Katugin deposit. Three groups of granites were distinguished: (1) biotite ( Bt ) and biotite–riebeckite ( Bt–Rbk ) granites of the western block of the massif; (2) biotite–arfvedsonite ( Bt–Arf ) granites of the eastern block; and (3) arfvedsonite ( Arf ), aegirine–arfvedsonite ( Aeg–Arf ), and aegirine ( Aeg ) granites of the eastern block. The Bt and Bt–Rbk granites of the first group are mainly metaluminous and peraluminous rocks with rather high CaO contents and the minimum F contents among the granites described here. It was suggested that the granites of this group could be derived from a source dominated by crustal rocks with a small addition of mantle materials. These granites probably crystallized from a metaluminous–peraluminous melt with elevated CaO and moderate F contents. Melts of such compositions are least favorable for the crystallization of ore minerals. The Bt–Arf granites of the second group are mainly peralkaline and show high contents of CaO and Y and low contents of Na 2 O and F. A mixed mantle–crust source was proposed for the Bt–Arf granites. The initial melt of the Bt–Arf granites could have a peralkaline composition with elevated CaO content and moderate to high F content. The Arf , Aeg–Arf , and Aeg granites of the third group are enriched in ore mineral and were classified as peralkaline granites with very low CaO contents, elevated Na2O and F contents, and usually very high contents of Zr, Hf, Nb, and Ta. Based on the geochemical and isotopic data, it was supposed that the source of the granites of the third group could be derivatives of basaltic magmas produced in an OIB-type source with a minor addition of crustal material to the magma generation zone. It was suggested that the primary melt of this granite group could be a peralkaline CaO-poor and F-rich silicic melt, which is most favorable for the crystallization of ore minerals. Based on the analysis of the geochemical characteristics of the three granite groups and their relationships within the Katugin massif, a qualitative model of its formation was proposed. According to this model, the Bt and Bt–Rbk granites of the western block crystallized first, followed by the Bt–Arf granites of the eastern block and, eventually, the Arf , Aeg–Arf , and Aeg granites enriched in ore minerals.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2018-03-06
    Description: A classification suggested for alkaline ultramafic rocks of the Ary-Mastakh and Staraya Rechka fields, Northern Anabar Shield, is based on the modal mineralogical composition of the rocks and the chemical compositions of their rock-forming and accessory minerals. Within the framework of this classification, the rocks are indentified as orangeite and alkaline ultramafic lamprophyres: aillikite and damtjernite. To estimate how much contamination with the host rocks has modified their composition when the diatremes were formed, the pyroclastic rocks were studied that abound in xenogenic material (which is rich in SiO 2 , Al 2 O 3 , K 2 O, Rb, Pb, and occasionally also Ba) at relatively low (La/Yb) PM , (La/Sm) PM , and not as much also (Sm/Zr) PM and (La/Nb) PM ratios. The isotopic composition of the rocks suggests that the very first melt portions were of asthenospheric nature. The distribution of trace elements and REE indicates that one of the leading factors that controlled the diversity of the mineralogical composition of the rocks and the broad variations in their isotopic–geochemical and geochemical characteristics was asthenosphere–lithosphere interaction when the melts of the alkaline ultramafic rocks were derived. The melting processes involved metasomatic vein-hosted assemblages of carbonate and potassic hydrous composition (of the MARID type). The alkaline ultramafic rocks whose geochemistry reflects the contributions of enriched vein assemblages to the lithospheric source material, occur in the northern Anabar Shield closer to the boundary between the Khapchan and Daldyn terranes. The evolution of the aillikite melts during their ascent through the lithospheric mantle could give rise to damtjernite generation and was associated with the separation of a C–H–O fluid phase. Our data allowed us to distinguish the evolutionary episodes of the magma-generating zone during the origin of the Triassic alkaline ultramafic rocks in the northern Anabar Shield.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2018-03-06
    Description: The Vorochistoozersky, Nizhnepopovsky, and Severo-Pezhostrovsky gabbro-anorthosite massifs have been studied in the central part of the Belomorian Province, Fennoscandian Shield. The similarity of geological setting and rock composition of these massifs suggests their affiliation to a single complex. The age of the gabbro-anorthosites was determined by U-Pb (SHRIMP II) zircon dating of gabbro-pegmatites from the Vorochistoozersky massif at 2505 ± 8 Ma. The studied massifs were overprinted by the high-pressure amphibolite facies metamorphism. Relicts of magmatic layering and primary magmatic assemblages preserved in the largest bodies. The massifs consist mainly of leucocratic gabbros but also contain rocks of the layered series varying in composition from olivinite to anorthosite. The presence of troctolites in the layered series indicates the stability of the olivine–plagioclase liquidus assemblage and, respectively, shallow depths of melt crystallization. Despite the composition differences between gabbro-anorthosites of the Belomorian and peridotite–gabbronorite intrusions Kola provinces, these simultaneously formed massifs presumably mark a single great igneous event. It also includes the gabbronorite dikes in the Vodlozero terrane of the Karelian province, the Mistassini swarm in the Superior province, and the Kaminak swarm in the Hearne Craton, Canadian Shield. The large igneous province of age ~2500 Ma reflects the oldest stage of within-plate magmatism after a consolidation of the Neoarchean crust of the Kenorland Supercontinent (Superia supercraton).
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    facet.materialart.
    Unknown
    Springer
    In: Petrology
    Publication Date: 2018-03-06
    Description: Gibbs energy minimization is the means by which the stable state of a system can be computed as a function of pressure, temperature and chemical composition from thermodynamic data. In this context, state implies knowledge of the identity, amount, and composition of the various phases of matter in heterogeneous systems. For seismic phenomena, which occur on time-scales that are short compared to the timescales of intra-phase equilibration, the Gibbs energy functions of the individual phases are equations of state that can be used to recover seismic wave speeds. Thermodynamic properties relevant to modelling of slower geodynamic processes are recovered by numeric differentiation of the Gibbs energy function of the system obtained by minimization. Gibbs energy minimization algorithms are categorized by whether they solve the non-linear optimization problem directly or solve a linearized formulation. The former express the objective function, the total Gibbs energy of the system, indirectly in terms of the partial molar Gibbs energies of phase species rather than directly in terms of the Gibbs energies of the possible phases. The indirect formulation of the objective function has the consequence that although these algorithms are capable of attaining high precision they have no generic means of treating phase separation and expertise is required to avoid local minima. In contrast, the solution of the fully linearized problem is completely robust, but offers limited resolution. Algorithms that iteratively refine linearized solutions offer a compromise between robustness and precision that is well suited to the demands of geophysical modeling.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2018-03-06
    Description: Possible topologies of miscibility gaps in arsenian (Cu,Ag) 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlores are examined. These topologies are based on a thermodynamic model for fahlores whose calibration has been verified for (Cu,Ag) 10 (Fe,Zn) 2 Sb 4 S 13 fahlores, and conform with experimental constraints on the incompatibility between As and Ag in (Cu,Ag) 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlores, and with experimental and natural constraints on the incompatibility between As and Zn and the nonideality of the As for Sb substitution in Cu 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlores. It is inferred that miscibility gaps in (Cu,Ag) 10 (Fe,Zn) 2 As 4 S 13 fahlores have critical temperatures several °C below those established for their Sb counterparts (170 to 185°C). Depending on the structural role of Ag in arsenian fahlores, critical temperatures for (Cu,Ag) 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlores may vary from comparable to those inferred for (Cu,Ag) 10 (Fe,Zn) 2 As 4 S 13 fahlores, if the As for Sb substitution stabilizes Ag in tetrahedral metal sites, to temperatures approaching 370°C, if the As for Sb substitution results in an increase in the site preference of Ag for trigonal-planar metal sites. The latter topology is more likely based on comparison of calculated miscibility gaps with compositions of fahlores from nature exhibiting the greatest departure from the Cu 10 (Fe,Zn) 2 (Sb,As) 4 S 13 and (Cu,Ag) 10 (Fe,Zn) 2 Sb 4 S 13 planes of the (Cu,Ag) 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlore cube.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2018-03-06
    Description: Isotopic dates newly obtained for the northwestern portion of the Angara–Vitim batholith are consistent with preexisting data on the duration of the Late Paleozoic magmatic cycle: 55–60 Ma (from 325 to 280 Ma). These data also indicate that alkaline mafic magmatism in western Transbaikalia began simultaneously with the transition from crustal granite-forming processes to the derivation of granites of a mixed mantle–crustal nature, with gradual enrichment of the juvenile component in the source of the magmas. Analysis of the currently discussed geodynamic models of Late Paleozoic magmatism shows that a key role in all models of extensive granite-forming processes in the region is assigned to mafic mantle magmas, which can be generated in various geotectonic environments: subduction, delamination, decompression, and a mantle plume. The plume model is most consistent with the intraplate character of the Angara–Vitim batholith. The derivation of the vast volume of granitic material (approximately 1 million km 3 ) should have required a comparable volume of mafic magma that should have been pooled in the middle crust of the Baikal fold area. However, the density structure of the region does not provide evidence of significant volumes of mafic rocks. This suggests that the mechanism of plume–lithospheric interaction that should have induced extensive crustal melting and the origin of vast granite areas was more complicated than simply conductive melting of crustal protoliths in contact with mafic intrusions.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...