GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (156)
  • PAPER CURRENT  (156)
  • Springer  (156)
  • Geosciences  (156)
Document type
  • Articles  (156)
Source
  • PAPER CURRENT  (156)
Publisher
  • Springer  (156)
Years
Journal
Topic
  • Geosciences  (156)
  • 1
    Publication Date: 2018-03-06
    Description: Fragments of heterogeneous cosmonegic substance (nickelphosphide Ni 3 P and ZnAl 2 ) were found using high resolution analytical electron microscopic techniques, for the first time in samples from a large meteorite crater: the Zhamanshin astrobleme in Kazakstan. Inasmuch as such fragments cannot simultaneously occur in meteorite of any one type, we suggest that the impactor of the Zhamanshin crater was of comet nature.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-06
    Description: A classification suggested for alkaline ultramafic rocks of the Ary-Mastakh and Staraya Rechka fields, Northern Anabar Shield, is based on the modal mineralogical composition of the rocks and the chemical compositions of their rock-forming and accessory minerals. Within the framework of this classification, the rocks are indentified as orangeite and alkaline ultramafic lamprophyres: aillikite and damtjernite. To estimate how much contamination with the host rocks has modified their composition when the diatremes were formed, the pyroclastic rocks were studied that abound in xenogenic material (which is rich in SiO 2 , Al 2 O 3 , K 2 O, Rb, Pb, and occasionally also Ba) at relatively low (La/Yb) PM , (La/Sm) PM , and not as much also (Sm/Zr) PM and (La/Nb) PM ratios. The isotopic composition of the rocks suggests that the very first melt portions were of asthenospheric nature. The distribution of trace elements and REE indicates that one of the leading factors that controlled the diversity of the mineralogical composition of the rocks and the broad variations in their isotopic–geochemical and geochemical characteristics was asthenosphere–lithosphere interaction when the melts of the alkaline ultramafic rocks were derived. The melting processes involved metasomatic vein-hosted assemblages of carbonate and potassic hydrous composition (of the MARID type). The alkaline ultramafic rocks whose geochemistry reflects the contributions of enriched vein assemblages to the lithospheric source material, occur in the northern Anabar Shield closer to the boundary between the Khapchan and Daldyn terranes. The evolution of the aillikite melts during their ascent through the lithospheric mantle could give rise to damtjernite generation and was associated with the separation of a C–H–O fluid phase. Our data allowed us to distinguish the evolutionary episodes of the magma-generating zone during the origin of the Triassic alkaline ultramafic rocks in the northern Anabar Shield.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-06
    Description: The Tuva–Mongolian terrane of the Central Asian Orogenic Belt is a composite structure with a Vendian–Cambrian terrigenous–carbonate cover. The Sangilen block in the southern part of the belt is a smaller composite structure, in which tectono–stratigraphic complexes of different age that were produced under various conditions were amalgamated in the course of Early Paleozoic tectonic cycle. The P–T parameters of the Early Paleozoic metamorphism in the western part of the Sangilen block corresponded to the amphibolite facies. The gneisses of the Erzin Complex contain relict granulite-facies mineral assemblages. The granulites are dominated by metasediments typical of deep-water basins on passive continental margins. The only exception is granulites of the Lower Erzin tectonic nappe of the Chinchlig thrust system: these rocks are metatholeiites, tonalites, and trondhjemites, whose REE patterns are similar to those of MORB. The composition of these granulites and their high Sm/Nd ratios indicate that the rocks were derived from juvenile crust that had been formed in an environment of a mature island arc or backarc basin. It is reasonable to believe that these rocks are fragments of the Late Riphean basement of the Sangilen block. The average 206 Pb/ 238 U zircon age of the garnet–hypersthene granulites is 494 ± 11 Ma. With regard for the zircon age of the postmetamorphic granitoids, the granulite-facies metamorphism occurred within the age range of 505–495 Ma. The peak metamorphic temperature reached 910–950°C, and the pressure was 3–4 kbar, which corresponds to ultrahigh-temperature/low-pressure (UHT–LP) metamorphism. The garnet–hypersthene orthogranulites were formed at a temperature that decreased to ~850°C and pressure that increased to ~5.5‒7 kbar. It can be hypothesized that the earlier UHT–LP granulites were produced at an elevated heat flux and were later (in the course of continuing collision) overlain by a relatively cold tectonic slab, and this leads to a certain temperature decrease and pressure increase. This relatively cold slab could consist of fragments of the Vendian elevated-pressure metamorphic belt whose development terminated at the Vendian–Cambrian boundary before the onset of the Early Paleozoic regional metamorphism.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-06
    Description: Titanium contents of quartz have been analyzed in samples of granulites from various metamorphic complexes of eastern Siberia (Sutam, Chogar, and Sharyzhalgai) that contain mineral assemblages conventionally regarded as indicative of “ultrahigh-temperature” metamorphism. The related TitaniQ temperature estimates (Wark and Watson, 2006) are consistent with those of other mineralogical geothermometers and are commonly much lower than “ultrahigh-temperature”.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-06
    Description: Possible topologies of miscibility gaps in arsenian (Cu,Ag) 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlores are examined. These topologies are based on a thermodynamic model for fahlores whose calibration has been verified for (Cu,Ag) 10 (Fe,Zn) 2 Sb 4 S 13 fahlores, and conform with experimental constraints on the incompatibility between As and Ag in (Cu,Ag) 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlores, and with experimental and natural constraints on the incompatibility between As and Zn and the nonideality of the As for Sb substitution in Cu 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlores. It is inferred that miscibility gaps in (Cu,Ag) 10 (Fe,Zn) 2 As 4 S 13 fahlores have critical temperatures several °C below those established for their Sb counterparts (170 to 185°C). Depending on the structural role of Ag in arsenian fahlores, critical temperatures for (Cu,Ag) 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlores may vary from comparable to those inferred for (Cu,Ag) 10 (Fe,Zn) 2 As 4 S 13 fahlores, if the As for Sb substitution stabilizes Ag in tetrahedral metal sites, to temperatures approaching 370°C, if the As for Sb substitution results in an increase in the site preference of Ag for trigonal-planar metal sites. The latter topology is more likely based on comparison of calculated miscibility gaps with compositions of fahlores from nature exhibiting the greatest departure from the Cu 10 (Fe,Zn) 2 (Sb,As) 4 S 13 and (Cu,Ag) 10 (Fe,Zn) 2 Sb 4 S 13 planes of the (Cu,Ag) 10 (Fe,Zn) 2 (Sb,As) 4 S 13 fahlore cube.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-06
    Description: Reactions and partial melting of peraluminous rocks in the presence of H 2 O-CO 2 –salt fluids under parameters of granulite-facies metamorphism were modeled in experiments on interaction between orthopyroxene–cordierite–biotite–plagioclase–quartz metapelite with H 2 O, H 2 O-CO 2 , H 2 O-CO 2 -NaCl, and H 2 O-CO 2 -KCl fluids at 600 MPa and 850°C. Rock melting in the presence of H 2 O and equimolar H 2 O-CO 2 fluids generates peraluminous (A/CNK 1 〉 1.1) melts whose composition corresponds to magnesian calcic or calc–alkaline S-type granitoids. The melts are associated with peritectic phases: magnesian spinel and orthopyroxene containing up to 9 wt % Al 2 O 3 . In the presence of H 2 O-CO 2 -NaCl fluid, cordierite and orthopyroxene are replaced by the association of K-Na biotite, Na-bearing gedrite, spinel, and albite. The Na 2 O concentrations in the biotite and gedrite are functions of the NaCl concentrations in the starting fluid. Fluids of the composition H 2 O-CO 2 -KCl induce cordierite replacement by biotite with corundum and spinel and by these phases in association with potassium feldspar at X KCl = 0.02 in the fluid. When replaced by these phases, cordierite is excluded from the melting reactions, and the overall melting of the metapelite is controlled by peritectic reactions of biotite and orthopyroxene with plagioclase and quartz. These reactions produce such minerals atypical of metapelites as Ca-Na amphibole and clinopyroxene. The compositions of melts derived in the presence of salt-bearing fluids are shifted toward the region with A/CNK 〈 1.1, as is typical of so-called peraluminous granites of type I. An increase in the concentrations of salts in the fluids leads to depletion of the melts in Al 2 O 3 and CaO and enrichment in alkalis. These relations suggest that the protoliths of I-type peraluminous granites might have been metapelites that were melted when interacting with H 2 O-CO 2 -salt fluids. The compositions of the melts can evolve from those with A/CNK 〉 1.1 (typical of S-type granites) toward those with A/CNK = 1.0–1.1 in response to an increase in the concentrations of alkali salts in the fluids within a few mole percent. Our experiments demonstrate that the origin of new mineral assemblages in metapelite in equilibrium with H 2 O-CO 2 -salt fluids is controlled by the activities of alkaline components, while the H 2 O and CO 2 activities play subordinate roles. This conclusion is consistent with the results obtained by simulating metapelite mineral assemblages by Gibbs free energy minimization (using the PERPE_X software), as shown in log( \({a_{{H_2}O}}\) )–log( \({a_{N{a_2}O}}\) ) and log( \({a_{{H_2}O}}\) )–log( \({a_{{K_2}O}}\) ) diagrams.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-06
    Description: Isotopic dates newly obtained for the northwestern portion of the Angara–Vitim batholith are consistent with preexisting data on the duration of the Late Paleozoic magmatic cycle: 55–60 Ma (from 325 to 280 Ma). These data also indicate that alkaline mafic magmatism in western Transbaikalia began simultaneously with the transition from crustal granite-forming processes to the derivation of granites of a mixed mantle–crustal nature, with gradual enrichment of the juvenile component in the source of the magmas. Analysis of the currently discussed geodynamic models of Late Paleozoic magmatism shows that a key role in all models of extensive granite-forming processes in the region is assigned to mafic mantle magmas, which can be generated in various geotectonic environments: subduction, delamination, decompression, and a mantle plume. The plume model is most consistent with the intraplate character of the Angara–Vitim batholith. The derivation of the vast volume of granitic material (approximately 1 million km 3 ) should have required a comparable volume of mafic magma that should have been pooled in the middle crust of the Baikal fold area. However, the density structure of the region does not provide evidence of significant volumes of mafic rocks. This suggests that the mechanism of plume–lithospheric interaction that should have induced extensive crustal melting and the origin of vast granite areas was more complicated than simply conductive melting of crustal protoliths in contact with mafic intrusions.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-06
    Description: The paper presents newly obtained original data on the morphology, internal structure (as seen in cathodoluminescence images, CL), and composition of more than 400 zircon grains separated from gabbroids and plagiogranites (OPG) sampled at the axial zone of the Mid-Atlantic Ridge (MAR). The zircons were analyzed for REE by LA-ICP-MS and for Hf, U, Th, Y, and P by EPMA. Magmatic zircon in the gabbroids crystallized from differentiating magmatic melt in a number of episodes, as follows from systematic rimward increase in the Hf concentration, and also often from the simultaneous increase in the (U + Th) and (Y + P) concentrations. These tendencies are also discernible (although much less clearly) in zircons from the OPG. Zircon in the OPG is depleted in REE compared to the least modified zircons in the gabbro, which suggests that the OPG were derived via partial melting of gabbro in the presence of seawater-derived concentrated aqueous salt fluid. Another reason for the REE depletion might be simultaneous crystallization of zircon and apatite. The CL-dark sectors, which are found in practically all of the magmatic zircon grains, have Y/P (a.p.f.u.) ≫ 1 which most likely resulted from OH accommodation in the zircon structure, a fact suggesting that the OPG parental melt contained water. High-temperature hydrothermal processes induced partial to complete recrystallization of zircon (via dissolution-reprecepitation), a process that was associated with ductile and brittle deformations of the zircon-hosting rocks. The morphology of the hydrothermal zircons varies depending on pH and silica activity in the fluid from weakly corroded subhedral crystals with typical vermicular microtopography of the crystal faces to completely modified grains of colloform structure. Geochemically, the earlier hydrothermal transformations of the zircons resulted in their enrichment in La and other LREE, except only Ce, whose concentration, conversely, decreases compared to that of the unmodified magmatic zircons. The hydrothermal zircon displays a reduced Ce anomaly and its most altered domains typically host minute inclusions of xenotime, U and Th oxides and silicates, and occasionally also baddeleyite, which suggests that the hydrothermal fluid was reduced and highly alkaline. These features were acquired by the seawater-derived fluid when it circulated within the axial MAR zone area due to phase separation in the H 2 O–NaCl system and particularly as a result of fluid interaction with the abyssal peridotites of oceanic core complexes. Our data demonstrate that zircon is a sensitive indicator of tectonic and physicochemical processes in the oceanic crust.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-06
    Description: The geochemical and zircon geochronological (U-Pb, SHRIMP-II) study of Mesoarchean gabbros of the South Vygozersky and Kamennoozersky greenstone structures of Central Karelia made it possible to distinguish four gabbro types: (1) Fe–Ti gabbro, 2869 ± 12 Ma, (2) gabbro compositionally close to tholeiitic basalts, 2857 ± 7 Ma, (3) leucogbabbro, 2840 ± 5 Ma; and (4) melanogabbro, 2818 ± 14 Ma. From the early to late gabbros, the rocks are depleted in Ti, Fe, V, Y, Zr, Nb, Hf, REE and enriched in Mg, Ca, Cr, Ni. According to the systematics (Condie, 2005), the Nb/Y, Zr/Y, Zr/Nb ratios in the studied Late Archean gabbros are close to those of primitive mantle, while the gabbros in composition are similar to those of plumederived ocean-plateau basalts. Their magma sources were derived from different mantle reservoirs. The leucogabbro and melanogabbro with similar εNd = +4 were derived from a depleted mantle source (DM). The gabbro close in composition to tholeiitic basalts and having the elevated positive ε Nd (+4.9) was derived from a strongly depleted mantle source. Insignificant admixture of crustal material or lithospheric mantle is inferred in a source of the Fe–Ti gabbro (with lowest ε Nd = +2.1).
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Springer
    In: Petrology
    Publication Date: 2018-03-06
    Description: New isotopic-geochemical data are reported on the Late Cretaceous–Paleocene ultrapotassic volcanic rocks of the alkaline–ultrabasic complex of the Valagin Ridge, Eastern Kamchatka. The high Mg, low Ca and Al contents at high K/Na ratios in these rocks make them similar to the Mediterranean-type lamproites and ultrapotassic rocks. The low contents of high-field strength (HFSE) and heavy rare-earth (HREE) elements relative to the MORB composition, and the low Sr and high Nd isotopic ratios indicate the formation of their primary melts from a depleted mantle source. The enrichment of the ultrapotassic rocks in the large-ion lithophile elements (LILE) can be explained by the fluid influx in melts during melting of subsided oceanic crust.
    Print ISSN: 0869-5911
    Electronic ISSN: 1556-2085
    Topics: Geosciences
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...