GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (336)
  • PAPER CURRENT  (336)
  • Aquatic Ecology  (336)
  • 2339
Document type
  • Articles  (336)
Source
  • PAPER CURRENT  (336)
Publisher
Years
Journal
Topic
  • 1
    Publication Date: 2018-03-06
    Description: We examined spatial and environmental effects on the deconstructed assemblages of littoral macroinvertebrates within a large lake. We deconstructed assemblages by three biological trait groups: body size, dispersal mode and oviposition behaviour. We expected that spatial effects on assemblage structuring decrease and environmental effects increase with increasing body size. We also expected stronger environmental filtering and weaker spatial effect on the assemblages of flying species compared with assemblages of non-flying species. Stronger effect of environmental filtering was expected on the assemblages with species attaching eggs compared with assemblages of species with free eggs. We used redundancy analysis with variation partitioning to examine spatial and environmental effects on the deconstructed assemblages. As expected, the importance of environmental filtering increased and that of spatial effects decreased with increasing body size. Opposite to our expectations, assemblages of non-flying species were more affected by environmental conditions compared to assemblages of flying species. Concurring with our expectations, the importance of environmental filtering was higher in structuring assemblages of species attaching eggs than in structuring those with freely laid eggs. The amount of unexplained variation was higher for assemblages with small-sized to medium-sized species, flying species and species with free eggs than those with large-sized species, non-flying species and species with attached eggs. Our observations of decreasing spatial and increasing environmental effects with increasing body size of assemblages deviated from the results of previous studies. These results suggest differing metacommunity dynamics between within-lake and among-lake levels and between studies covering contrasting taxonomic groups and body size ranges.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-03-06
    Description: Wetland seed banks comprise the propagules of plant species that have species-specific germination requirements for germination in either flooded or dry conditions. At the community level, wetland structure and succession during and after a seasonal flooding event depends upon the early life-history requirements of species, including germination under flooded and dry conditions. We examined the effects of simulated flood and post-flood scenarios on seedling emergence from a seed bank of seasonally flooded grassland in the Pantanal, Brazil. Field samplings were conducted in both wet and dry seasons, both of which were subject to flood and post-flood conditions. A total of 70 species emerged from the seed bank, dominated by Poaceae and Cyperaceae. Sixteen species were exclusive to the wet and one exclusive to the dry season. The richness of perennial species was higher under flood conditions, while the richness of annuals was greater post-flood. In general, the aquatic and amphibious species exhibited a significant germination response to flooding. Terrestrial species only germinated in post-flood conditions, with higher richness in the dry season. Four species had high seedling abundance in both treatments. The capacity of regeneration by seeds is high in these grasslands and can be increased by seasonal flooding and drawdown. In these seasonally flooded grasslands, we observed three main germination strategies: under flooded conditions, aquatic and amphibious species; post-flood conditions, an explosion of annual amphibious and terrestrial species; and in moist soil, perennial terrestrial species. The differential responses to flooding versus post-flood conditions help to maintain the structure and species richness in the community over time.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-03-06
    Description: Variation in biological communities is a consequence of stochastic and deterministic factors. Examining the relative importance of these factors helps to understand variation in the whole biodiversity in a region. We examined the roles of stochastic and deterministic factors in structuring macroinvertebrate communities in high-latitude streams across two seasons. We predicted that if communities are the result of deterministic environmental filtering processes, the communities should show strong association with environmental variables, as taxa would be selected according to stream environmental conditions. However, if communities are driven by stochastic factors, they should show strong association with spatial variables, as the distribution of taxa in communities would be driven by spatially related dispersal factors. We studied these predictions by calculating the degree of uniqueness of the streams in terms of their taxonomic and functional community compositions and by modelling the resulting index values using spatial and environmental variables. Our results supported the first prediction where the communities are more influenced by the environmental filtering processes, although indications of the effect of spatial processes in structuring the communities were present especially in autumn. High-latitude stream communities also seem to be sensitive to environmental changes, as even small changes in environment were enough to affect the ecological uniqueness of the streams. These findings highlight the vulnerability of northern streams in the face of the climate change. To maintain biodiversity in high-latitude catchments, it would be important to protect varying habitat conditions, which are the main forces affecting the ecological uniqueness of the streams.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-03-06
    Description: Invasions of introduced plants are considered among the greatest threats to biodiversity worldwide. Aquatic habitats suffer invasion more frequently and extensively than do terrestrial habitats. Although the role of roots in plant anchoring and support is important, previous studies have focused much attention on the morphological traits of above-ground parts, with relatively less attention given to the root structures of aquatic plants. In this study, we aimed to compare differences in root morphological and structural traits between introduced and native plants in response to different substrates. We hypothesized that introduced aquatic plants have an advantage over native plants with regard to root trait values and plasticity. A total of six aquatic plants were used: Two invasive and one exotic noninvasive species were paired with their native counterparts according to life form (amphibious emergent, submerged and floating-leaved) and cultivated in substrates of clay, a clay/sand mixture ( v : v  = 1:1) or sand. Root morphological traits, topological indices and root relative distance plasticity indices were quantified. The results indicated that different substrates have various effects on the root traits of these six aquatic plants; the introduced plants generally exhibited higher plasticity than did their native counterparts of the same life form.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-06
    Description: Determination of ecological responses to river flows is fundamental to understanding how flow-dependent ecosystems have been altered by regulation, water diversions and climate change, and how to effect river restoration. Knowledge of ecohydrological relationships can support water management and policy, but this is not always the case. Management rules have tended to be developed ahead of scientific knowledge. The lag between practice and knowledge could be addressed by using historical monitoring data on ecological responses to changes in flows to determine significant empirical ecohydrological relationships, as an adjunct to investigating responses prospectively. This possibility was explored in the Murray–Darling Basin, Australia. We assessed 359 data sets collected during monitoring programs across the basin. Of these, only 32 (9%) were considered useful, based on a match between the scale at which sampling was done and ecological responses are likely to occur, and used to test flow–ecology predictions for phytoplankton, macroinvertebrates, fishes, waterbirds, floodplain trees, basin-scale vegetation and estuarine biota. We found relationships between flow and ecological responses were likely to be more strongly supported for large, long-lived, widespread biota (waterbirds, basin-scale vegetation, native fishes), than for more narrowly distributed (e.g. estuarine fishes) or smaller, short-lived organisms (e.g. phytoplankton, macroinvertebrates). This pattern is attributed to a mismatch between the design of monitoring programs and the response time frames of individual biota and processes, and to the use of local river discharge as a primary predictor variable when, for many biotic groups, other predictors need to be considered.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-03-06
    Description: Fertilizer use has dramatically increased the availability of nitrate (NO 3 − ) in aquatic systems. Microbe-mediated denitrification is one of the predominant means of NO 3 − removal from freshwaters, yet oxygenation (O 2 )-induced disruptions—e.g., extreme precipitation events—can occur, resulting in a disproportional increase in nitrous oxide (N 2 O) production and efflux as facultative anaerobic bacterial populations use of O 2 as a terminal electron acceptor increases. We examined the effects of 12- and 24-h passive O 2 exposure on previously anaerobic bacterial communities focusing on denitrification enzyme activity (DEA), N 2 O production, and bacterial community 16S rRNA and nitrous oxide reductase gene ( nosZ ) profiles after 12, 24, and 48 h of anaerobic recovery. Treatments experiencing 24-h O 2 exposure had significantly higher DEA 12 h into anaerobic recovery than treatments undergoing 12-h O 2 exposure. Initial N 2 O emissions were significantly lower in the 24-h O 2 exposure treatments although by 24 h a dramatic spike (tenfold relative to the 12-h O 2 exposure treatments) in N 2 O concentrations was observed. However, within 6 h (30-h anaerobic recovery) these differences were gone. Community nosZ profiles experiencing 24-h O 2 exposure exhibited reduced diversity after 24-h recovery, which corresponded with an increase in N 2 O emissions. However, after 48 h of anaerobic recovery, nosZ diversity had recovered. These observations highlight the effects of short-term aerobic disruption on denitrification, as well as the effects on the denitrifier community profile. Together, these data suggest that recovery to ambient N cycling is exacerbated by disturbance length due to increased lag time and subsequent loss of denitrifier community diversity.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-03-06
    Description: We aimed to study whether the varying changes in predation pressure by perch ( Perca fluviatilis ) reflect the biomass, density, and community structure of the benthic macroinvertebrates. Prey preference is size-dependent, and overall predation pressure is density dependent, and thus the size structure of the P. fluviatilis population should affect the structure of the macroinvertebrate community, and the population density of P. fluviatilis should reflect the overall density of benthic macroinvertebrates. We sampled the littoral benthic community in a boreal lake that had been divided into two parts that were subjected to two different fishing procedures during 2007–2012 period and analyzed the macroinvertebrate diet of fish. The benthic macroinvertebrate community reflected the predation pressure. Total macroinvertebrate biomass increased during the study period in the lake division with a non-size-selective fishing procedure (NSF), i.e., all invertivorous perch size-classes targeted, but decreased in the section with negatively size-selective fishing procedure (SSF), i.e., large invertivorous individuals ≥ 16 cm were not targeted. This difference was a result of the increase in large-sized species, such as Odonata, for the NSF procedure and decrease in the SSF procedure. In contrast to total biomass, total macroinvertebrate density did not show a response to predator size structure but rather total macroinvertebrate density decreased with increasing fish density. The study demonstrates the effect of predation pressure of P. fluviatilis on benthic communities, thus highlighting the keystone predator role of the species in boreal lakes and gives more insight on the multiple effects of fish predation on littoral benthic communities.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-06
    Description: Phosphorus and nitrogen fertilizers represent a source of cadmium (Cd) which may be leached into aquatic systems. Macrophytes accumulate contaminants, and Egeria densa has been shown to grow in aquatic environments polluted with trace elements. In this study, Cd accumulation by E. densa exposed to two Cd treatments (3 and 5 mg L −1 ) was evaluated under increasing nutrient levels (NP as N–NO 3 − , N–NH 4 + , and P–PO 4 3− , in concentrations 5-, 10- and 100-fold higher (NP 5 , NP 10 and NP 100 ) than in the sampling site) to simulate different levels of eutrophication. Bioaccumulation factors and Cd recovery were calculated and effects on plants were evaluated based on chloroplastidic pigment concentrations (chlorophylls a and b , and carotenoids). We conclude that Cd accumulation by Egeria densa is positively influenced by increasing availability of N and P at the level of around NP 10 and probably at a broader concentration range not defined in this study. A further increase in N and P, however, does not generate a significant increase in Cd accumulation. Chloroplastidic pigment concentrations were not linearly correlated with Cd accumulation and the NP 10 experiment produced less damage to macrophyte when compared to NP 5 and NP 100 experiments. Under controlled conditions, it was possible to satisfactorily model Cd bioaccumulation over time, in order to provide essential data for E. densa use in phytoremediation processes. The Cd residence in the macrophyte tissue is increased in eutrophic environments, which puts at risk the whole food chain of the aquatic ecosystem, mainly the primary consumers.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-06
    Description: Algal biofuel has potential as a source of renewable fuel and a tool for wastewater remediation. Open algal bioreactors fertilized with wastewater can have net energy gain but are vulnerable to colonization by algal grazers. However, colonizing predaceous insects may limit grazer impacts on algae. Here, we investigate the effects of grazers, predators, and invading algae species on algal production and community structure in high-nutrient environments. First, we grew diverse algal assemblages in treated municipal wastewater in a greenhouse with Daphnia grazers and different insect predators that were added experimentally. When Daphnia were present without predators, they eliminated suspended algae. But, dragonfly larvae [Odonata: Libellulidae] and backswimmers [Hemiptera: Notonectidae], but not larval diving beetles [Coloeoptera: Dytiscidae], suppressed Daphnia allowing suspended algae to persist. Second, we grew Chlorella algae in field tanks that were open or protected from natural invertebrate colonization and half the tanks received wild-collected plankton in a factorial design. Mosquito larvae [ Culex sp.] readily colonized open tanks and reduced algal mass and dissolved phosphorus concentrations. Colonist addition to open tanks shifted algal functional and taxonomic composition but did not impact suspended algal production. Our study indicates that large numbers of grazer individuals can rapidly colonize open bioreactors. Experimentally added and naturally colonizing grazers altered algal community structure and reduced algal standing crops but may also aid in nutrient removal from wastewater-fed bioreactors. Effective operation of open algal bioreactors must consider cultivated algae species’ vulnerability to competition and local grazers as well as the ability of potential predators to both naturally disperse into bioreactors and to control grazers.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-03-06
    Description: Despite their widespread use in grazer–biofilm studies, stream exclusion cages have inherent physical properties that may alter benthic organism colonization and growth. We used laboratory studies and a field experiment to determine how exclusion cage design (size and material) alters light availability, water velocity, and benthic organism colonization. We measured light reduction by various plastic cage materials and flow boundary layer thickness across a range of exclusion cage sizes in the laboratory. We also deployed multiple exclusion cage designs based on commonly available materials into a second-order stream to assess algae and macroinvertebrate colonization differences among exclusion cages. All plastics reduced some light (190–700 nm wavelengths) and blocked more ultraviolet light than photosynthetically active radiation. Exclusion cage size did not influence flow boundary layer thickness, but larger exclusions tended to have higher velocity at the substrata surface. Despite light and water velocity differences, algal biomass, macroinvertebrate density, and community composition were similar between exclusion cage types. However, algal assemblages outside exclusion cages differed in composition and had higher biomass compared to inside exclusion cages. In terms of algal and macroinvertebrate colonization, plastic exclusion cage size and material appear to be flexible within the sizes tested, but differences can still exist between exclusion cage communities and those within the stream. Overall, artifacts of screened exclusion cages do not appear to introduce large bias in results of grazer–biofilm studies, but efforts to design exclusion cages that better mimic the natural system should continue.
    Print ISSN: 1386-2588
    Electronic ISSN: 1573-5125
    Topics: Biology
    Published by Springer
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...