Beneficial impacts of biochar as a potential feed additive in animal husbandry

Authors

  • Parvathy S Nair Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Sivani Menon P S Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Shreya Suresh Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Sreekanth A J Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Sivasabari K Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Adithya Krishna S Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Anuranj P R Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Nayana Krishnan Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Parvathy S Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, Tamil Nadu – 642109, India
  • Sandip Chakraborty Department of Veterinary Microbiology, College of Veterinary Sciences and Animal Husbandry, R.K. Nagar, West Tripura, Tripura, Pin-799008, India https://orcid.org/0000-0002-2792-3281
  • Hitesh Chopra Department of Biosciences, Saveetha School of engineering, Saveetha Institute of Medical and Technical Sciences, Chennai – 602105, Tamil Nadu, India https://orcid.org/0000-0001-8867-7603
  • Shopnil Akash Faculty of Allied Health Science, Department of Pharmacy, Daffodil International University, Daffodil smart city, Ashulia, Savar, Dhaka-1207, Bangladesh https://orcid.org/0000-0003-1751-705X
  • Ruhul Amin Faculty of Pharmaceutical Science, Assam down town University, Panikhaiti, Gandhinagar, Guwahati, Assam-781026, India https://orcid.org/0000-0001-5329-8152
  • Abhijit Dey Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata-700073, West Bengal, India https://orcid.org/0000-0002-5750-0802
  • Mahmoud Alagawany Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt https://orcid.org/0000-0002-8020-0971
  • Deepak Chandran Department of Animal Husbandry, Government of Kerala, India https://orcid.org/0000-0002-9873-6969
  • Kuldeep Dhama Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh - 243122, India https://orcid.org/0000-0001-7469-4752

DOI:

https://doi.org/10.18006/2023.11(3).479.499

Keywords:

Biochar, Activated charcoal, Animal husbandry, Livestock production, Feed additive, Animal nutrition

Abstract

In the last decade, biochar production and use have grown in popularity. Biochar is comparable to charcoal and activated charcoal because it is a pyrogenic carbonaceous matter made by pyrolyzing organic carbon-rich materials. There is a lack of research into the effects of adding biochar to animal feed. Based on the reviewed literature, including its impact on the adsorption of toxins, blood biochemistry, feed conversion rate, digestion, meat quality, and greenhouse gas emissions, adding biochar to the diet of farm animals is a good idea. This study compiles the most important research on biochar's potential as a supplement to the diets of ruminants (including cows and goats), swine, poultry, and aquatic organisms like fish. Biochar supplementation improves animal growth, haematological profiles, meat, milk and egg yield, resistance to illnesses (especially gut pathogenic bacteria), and reduced ruminant methane emission. Biochar's strong sorption capacity also helps efficiently remove contaminants and poisons from the animals' bodies and the farm surroundings where they are raised. Animal farmers are predicted to make greater use of biochar in the future. Biochar could potentially be of value in the healthcare and human health fields; hence research into this area is encouraged. The present review highlights the potential benefits of biochar as an additive to animal feed and demonstrates how, when combined with other environmentally friendly practices, biochar feeding can extend the longevity of animal husbandry.

References

Ademoyero, A.A., & Dalvi, R.R. (1983). Efficacy of activated charcoal and other agents in the reduction of hepatotoxic effects of a single dose of aflatoxin B1 in chickens. Toxicology Letters, 16(1-2), 153–157. https://doi.org/10.1016/0378-4274(83)90024-3

Allen, H.K., Levine, U.Y., Looft, T., Bandrick, M., & Casey, T.A. (2013). Treatment, promotion, commotion: Antibiotic alternatives in food-producing animals. Trends in Microbiology, 21(3), 114– 119. https://doi.org/10.1016/j.tim.2012.11.001

Altaf, A.R., Teng, H., Zheng, M., Ashraf, I., Arsalan, M., Rehman, A. U., Gang, L., Pengjie, W., Yongqiang, R., & Xiaoyu, L. (2021). One-step synthesis of renewable magnetic tea-biochar derived from waste tea leaves for the removal of Hg0 from coal-syngas. Journal of Environmental Chemistry, 9, 105313. https://doi.org/10.1021/acsomega.1c02925

Antal, M.J., & Grønli, M. (2003). The art, science, and technology of charcoal production. Industrial and Engineering Chemistry Research, 42(8):1619-1640. https://doi.org/10.1021/ie0207919

Avantaggiato, G., Havenaar, R., & Visconti, A. (2004). Evaluation of the intestinal absorption of deoxynivalenol and nivalenol by an in vitro gastrointestinal model, and the binding efficacy of activated carbon and other adsorbent materials. Food and chemical toxicology, 42(5), 817–824. https://doi.org/10.1016/j.fct.2004.01.004

Banner, R.E., Rogosic, J., Burritt, E.A., & Provenza, F.D. (2000). Supplemental barley and charcoal increase intake of sagebrush by lambs. Journal of Range Management, 53(4), 415-420. https://doi.org/10.2307/4003753

Bhatti, S.A., Khan, M.Z., Hassan, Z.U., Saleemi, M.K., Saqib, M., Khatoon, A., & Akhter, M. (2018). Comparative efficacy of bentonite clay, activated charcoal and Trichosporon mycotoxinivorans in regulating the feed-to-tissue transfer of mycotoxins. Journal of the Science of Food and Agriculture, 98(3), 884–890. https://doi.org/10.1002/jsfa.8533

Bolan, N., Hoang, S. A., Beiyuan, J., Gupta, S., Hou, D., Karakoti, A., Joseph, S., Jung, S., Kim, K.H., Kirkham, M.B., Kua, H.W., Kumar, M., Kwon, E.E., Ok, Y.S., Perera, V., Rinklebe, J., Shaheen, S.M., Sarkar, B., Sarmah, A.K., &. Van Zwieten, L. (2022). Multifunctional applications of biochar beyond carbon storage. International Materials Reviews, 67(2), 150-200. https://doi.org/10.1080/09506608.2021.1922047

Brendova, K., Tlustos, P., Szakova, J., & Habart, J. (2012). Biochar properties from different materials of plant origin. European Chemical Bulletin, 1, 535–539.

Brewer, C.E., Chuang, V.J., Masiello, C.A., Gonnermann, H., Gao, X., Dugan, B., Driver, L.E., Panzacchi, P., Zygourakis, K., & Davies, C. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176-185. https://doi.org/10.1016/j.biombioe.2014.03.059

Brown, T.R., Wright, M.M., & Brown, R.C. (2011). Estimating profitability of two biochar production scenarios: Slow pyrolysis vs fast pyrolysis. Biofuels, Bioproducts and Biorefining, 5(1), 54-68. https://doi.org/10.1002/bbb.254

Bucheli, T.D., Hilber. I., & Schmidt, H.P. (2015). Polycyclic aromatic hydrocarbons and polychlorinated aromatic compounds in biochar. Biochar for Environmental Management. London: Routledge, 595-624.

Bueno, D.J., Di Marco, L., Oliver, G., & Bardón, A. (2005). In vitro binding of zearalenone to different adsorbents. Journal of Food Protection, 68(3), 613–615. https://doi.org/10.4315/0362-028x-68.3.613

Cabeza, I., Waterhouse, T., Sohi, S., & Rooke, J.A. (2018). Effect of biochar produced from different biomass sources and at different process temperatures on methane production and ammonia concentrations in vitro. Animal Feed Science and Technology, 237, 1-7. https://doi.org/10.1016/j.anifeedsci.2018.01.003

Castillo-Gonzalez, A.R., Burrola-Barraza, M.E., Domınguez-Viveros, J., & ChavezMartınez, A. (2014). Rumen microorganisms and fermentation. Archivos de Medicina Veterinaria, 46(3), 349–361. https://doi.org/10.4067/S0301-732X2014000300003

Cederlund, H., Börjesson, E., & Stenström, J. (2017). Effects of a wood-based biochar on the leaching of pesticides chlorpyrifos, diuron, glyphosate and MCPA. Journal of Environmental Management, 191, 28-34. https://doi.org/10.1016/ j.jenvman.2017.01.004

Chan, K.Y., Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45, 629-634. https://doi.org/10.1071/SR07109

Chen, P., & McCreery, R.L. (1996). Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Analytical Chemistry, 68(22), 3958-3965. https://doi.org/10.1021/ac960492r

Chu, G.M., Jung, C.K., Kim, H.Y., Ha, J.H., Kim, J.H., Jung, M.S., Lee, S.J., Song, Y., Ibrahim, R.I., Cho, J.H., Lee, S. S., & Song, Y.M. (2013a). Effects of bamboo charcoal and bamboo vinegar as antibiotic alternatives on growth performance, immune responses and fecal microflora population in fattening pigs. Animal science journal = Nihon chikusan Gakkaiho, 84(2), 113–120. https://doi.org/10.1111/j.1740-0929.2012.01045.x

Chu, G.M., Kim, J.H., Kim, H.Y., Ha, J.H., Jung, M.S., Song, Y., Cho, J.H., Lee, S.J., Ibrahim, R.H.I., Lee, S.S., & Song, Y.M. (2013b.) Effects of bamboo charcoal on the growth performance, blood characteristics and noxious gas emission in fattening pigs. Journal of Applied Animal Resistance, 41(1), 48–55. https://doi.org/10.1080/09712119.2012.738219

Cooney, D.O., & Roach, M. (1979). Sucrose as a sweetener for activated charcoal. American Journal of Hospital Pharmacy, 36(6), 797–798.

Crome, P., Dawling, S., Braithwaite, R.A., Masters, J., & Walkey, R. (1977). Effect of activated charcoal on absorption of nortriptyline. Lancet (London, England), 2(8050), 1203–1205. https://doi.org/10.1016/s0140-6736(77)90440-8

Dai, L., Tan, F., Li, H., Zhu, N., He, M., Zhu, Q., Hu, G., Wang, L., & Zhao, J. (2017). Calcium-rich biochar from the pyrolysis of crab shell for phosphorus removal. Journal of Environmental Management, 198(1), 70–74. https://doi.org/10.1016/ j.jenvman.2017.04.057

Dai, Y., Zhang, N., Xing, C., Cui, Q., & Sun, Q. (2019). The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere, 223, 12–27. https://doi.org/10.1016/j.chemosphere.2019.01.161

Dalvi, R.R., & Ademoyero, A.A. (1984). Toxic effects of aflatoxin B1 in chickens given feed contaminated with Aspergillus flavus and reduction of the toxicity by activated charcoal and some chemical agents. Avian diseases, 28(1), 61–69.

Dalvi, R.R., & McGowan, C. (1984). Experimental induction of chronic aflatoxicosis in chickens by purified aflatoxin B1 and its reversal by activated charcoal, phenobarbital, and reduced glutathione. Poultry Science, 63(3), 485–491. https://doi.org/ 10.3382/ps.0630485

Danielsson, R., Dicksved, J., Sun, L., Gonda, H., Müller, B., Schnürer, A., & Bertilsson, J. (2017). Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Frontiers in Microbiology, 8, 226. https://doi.org/10.3389/fmicb.2017.00226

Dawling, S., Crome, P., & Braithwaite, R. (1978). Effect of delayed administration of activated charcoal on nortriptyline absorption. European Journal of Clinical Pharmacology, 14, 445-447.

Dayang, Y., Jinjia, N., Longchun, Z., Kaiyu, C., Guanyi, W., Meilin, Y., Dandan, L., & Zhiliang, Y. (2022). Biochar raw material selection and application in the food chain: A review. Science of The Total Environment, 836,155571. https://doi.org/10.1016/j.scitotenv.2022.155571.

De Mil, T., Devreese, M., Maes, A., De Saeger, S., De Backer, P., & Croubels, S. (2017). Influence of mycotoxin binders on the oral bioavailability of tylosin, doxycycline, diclazuril, and salinomycin in fed broiler chickens. Poultry Science, 96(7), 2137–2144. https://doi.org/10.3382/ps/pew503

Denli, M., & Okan, F. (2006). Efficacy of different adsorbents in reducing the toxic effects of aflatoxin B1 in broiler diets. S. Afr. J. Animal Science, 36(4), 222–228.

Devreese, M., Antonissen, G., DeBacker, P., & Croubels, S. (2014). Efficacy of active carbon towards the absorption of deoxynivalenol in Pigs. Toxins, 6(10), 2998-3004. https://doi.org/10.3390/toxins6102998

Devreese, M., Osselaere, A., Goossens, J., Vandenbroucke, V., De Baere, S., Eeckhout, M., De Backer, P., & Croubels, S. (2012). New bolus models for in vivo efficacy testing of mycotoxin-detoxifying agents in relation to EFSA guidelines, assessed using deoxynivalenol in broiler chickens. Food additives & contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 29(7), 1101–1107. https://doi.org/10.1080/ 19440049.2012.671788

Di Natale, F., Gallo, M., & Nigro, R. (2009). Adsorbents selection for aflatoxins removal in bovine milks. Journal of Food Protection, 95, 186–191. https://doi.org/10.1016/j.jfoodeng.2009.04.023

Diaz, D.E., Hagler, W. M., Jr, Blackwelder, J.T., Eve, J.A., Hopkins, B.A., Anderson, K.L., Jones, F.T., & Whitlow, L.W. (2004). Aflatoxin binders II: reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia, 157(2), 233–241. https://doi.org/10.1023/ b:myco.0000020587.93872.59

Döll, S., Dänicke, S., Valenta, H., & Flachowsky, G. (2004). In vitro studies on the evaluation of mycotoxin detoxifying agents for their efficacy on deoxynivalenol and zearalenone. Archives of Animal Nutrition, 58(4), 311–324. https://doi.org/10.1080/ 00039420412331273268

Dutta, A., Anex, R.P., Aden, A., Kazi, F.K., Fortman, J., Swanson, R.M., Wright, M.M., Satrio, J.A., Brown, R.C., Daugaard, D.E., Platon, A.,& Kothandaraman, G. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89, 29-35. https://doi.org/10.1016/j.fuel.2010.07.015

Edmunds, J.L., Worgan, H.J., Dougal, K., Girdwood, S. E., Douglas, J.L., & McEwan, N.R. (2016). In vitro analysis of the effect of supplementation with activated charcoal on the equine hindgut. Journal of Equine Science, 27(2), 49–55. https://doi.org/10.1294/jes.27.49

Edrington, T.S., Kubena, L.F., Harvey, R.B., & Rottinghaus, G.E. (1997). Influence of a superactivated charcoal on the toxic effects of aflatoxin or T-2 toxin in growing broilers. Poultry Science, 76(9), 1205–1211. https://doi.org/10.1093/ps/76.9.1205

Edrington, T.S., Sarr, A.B., Kubena, L.F., Harvey, R.B., & Phillips, T.D. (1996). Hydrated sodium calcium aluminosilicate (HSCAS), acidic HSCAS, and activated charcoal reduce urinary excretion of aflatoxin M1 in turkey poults. Lack of effect by activated charcoal on aflatoxicosis. Toxicology Letters, 89(2), 115–122. https://doi.org/10.1016/s0378-4274(96)03795-2

Erb, F., Gairin, D., & Leroux, N. (1989). Activated charcoals: properties-experimental studies. Journal de Toxicologie Clinique et Experimentale, 9(4), 235–248.

Evans, A.M., Boney, J.W., & Moritz, J.S. (2017). The effect of poultry litter biochar on pellet quality, one to 21 d broiler performance, digesta viscosity, bone mineralization, and apparent ileal amino acid digestibility. Journal for Applications of Poultry Resistance, 26, 89–98. https://doi.org/10.3382/japr/pfw049

Evans, A.M., Loop, S.A., & Moritz, J. S. (2015). Effect of poultry litter biochar diet inclusion on feed manufacture and 4- to 21-d broiler performance. Journal for Application of Poultry Resistance, 24, 380–386. https://doi.org/10.3382/japr/pfv039

FAO. (2019). Food and Agricultural Organization - Improving soil health and mitigating climate change: is biochar part of the solution?. Available at: https://www.fao.org/energy/news/news-details/en/c/1295174/. Accessed on: 30 May 2023

Feng, Y., Xu, Y., Yu, Y., Xie, Z., & Lin, X. (2012). Mechanisms of biochar decreasing methane emission from Chinese paddy soils. Soil Biology and Biochemistry, 46, 80–88. https://doi.org/10.1016/ j.soilbio.2011.11.016

Foster, T.S., Morley, H.V., Purkayastha, R., Greenhalgh, R., & Hunt, J.R. (1972). Residues in eggs and tissues of hens fed a ration containing low levels of pesticides with and without charcoal. Journal of Economic Entomology, 65(4), 982-988. https://doi.org/10.1093/jee/65.4.982

Fujita, H., Honda, K., Iwakiri, R., Guruge, K.S., Yamanaka, N., & Tanimura, N. (2012). Suppressive effect of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and dioxin-like polychlorinated biphenyls transfer from feed to eggs of laying hens by activated carbon as feed additive. Chemosphere, 88(7), 820–827. https://doi.org/10.1016/j.chemosphere.2012.03.088

Galvano, F., Pietri, A., Bertuzzi, T., Bognanno, M., Chies, L., DE Angelis, A., & Galvano, M. (1997). Activated carbons: in vitro affinity for fumonisin B1 and relation of adsorption ability to physicochemical parameters. Journal of Food Protection, 60(8), 985–991. https://doi.org/10.4315/0362-028X-60.8.985

Galvano, F., Pietri, A., Bertuzzi, T., Fusconi, G., Galvano, M., Piva, A., & Piva, G. (1996b). Reduction of carryover of aflatoxin from cow feed to milk by addition of activated carbons. Journal of Food Protection, 59(5), 551–554. https://doi.org/10.4315/0362-028X-59.5.551

Galvano, F., Pietri, A., Bertuzzi, T., Piva, A., Chies, L., & Galvano, M. (1998). Activated carbons: in vitro affinity for ochratoxin A and deoxynivalenol and relation of adsorption ability to physicochemical parameters. Journal of Food Protection, 61(4), 469–475. https://doi.org/10.4315/0362-028x-61.4.469

Galvano, F., Pietri, A., Fallico, B., Bertuzzi, T., Scirè, S., Galvano, M., & Maggiore, R. (1996a). Activated carbons: in vitro affinity for aflatoxin B1 and relation of adsorption ability to physicochemical parameters. Journal of Food Protection, 59(5), 545–550. https://doi.org/10.4315/0362-028X-59.5.545

Gerlach, H., & Schmidt, H. P. (2012). Biochar in poultry farming. Ithaka Journal, 1, 262–264.

Gerlach, H., Gerlach, A., Schrödl, W., Schottdorf, B., Haufe, S., Helm, H., Shehata, A., & Krüger, M. (2014). Oral application of charcoal and humic acids to dairy cows influences Clostridium botulinum blood serum antibody level and glyphosate excretion in urine. Journal of Clinical Toxicology, 4(2), 186. https://doi.org/10.4172/2161-0495.186

Giffard, C.J., Collins, S.B., Stoodley, N.C., Butterwick, R.F., & Batt, R.M. (2001). Administration of charcoal, Yucca schidigera, and zinc acetate to reduce malodorous flatulence in dogs. Journal of the American Veterinary Medical Association, 218(6), 892–896. https://doi.org/10.2460/javma.2001.218.892

Hagemann, N., Spokas, K., Schmidt, H. P., K€agi, R., Bohler, M., & Bucheli, T. (2019). Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs. Water, 10(2), 182. https://doi.org/10.3390/w10020182

Haider, F. U., Wang, X., Zulfiqar, U., Farooq, M., Hussain, S., Mehmood, T., Naveed, M., Li, Y., Liqun, C., Saeed, Q., Ahmad, I., & Mustafa, A. (2022). Biochar application for remediation of organic toxic pollutants in contaminated soils; An update. Ecotoxicology and Environmental Safety, 248, 114322. https://doi.org/10.1016/j.ecoenv.2022.114322

Hall, K.E., Spokas, K.A., Gamiz, B., Cox, L., Papiernik, S.K., & Koskinen, W.C. (2018). Glyphosate sorption/desorption on biochars - interactions of physical and chemical processes. Pest Management Science, 74(5), 1206–1212. https://doi.org/ 10.1002/ps.4530

Hansen, H.H., Storm, I.D., & Sell, A.M. (2012). Effect of biochar on in vitro rumen methane production. Acta Agriculturae Scandinavica, 62(4), 305–309. https://doi.org/10.1080/ 09064702.2013.789548

Herath, I., Kumarathilaka, P., Al-Wabel, M. I., Abduljabbar, A., Ahmad, M., Usman, A.R.A., & Vithanage, M. (2016). Mechanistic modeling of glyphosate interaction with rice husk derived engineered biochar. Microporous and Mesoporous Materials, 225, 280-288. https://doi.org/10.1016/j.micromeso.2016.01.017

Hristov, A.N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., & Adesogan, A. (2013). Mitigation of greenhouse gas emissions in livestock production. A review of technical options for non-CO emissions. Rome: FAO, 9-63.

Huang, Y.M., Li, G., Li, M., Yin, J., Meng, N., Zhang, D., Cao, X.Q., Zhu, F.P., Chen, M., Li, L., & Lyu, X.J. (2021). Kelp-derived N-doped biochar activated peroxymonosulfate for ofloxacin degradation. The Science of the Total Environment, 754, 141999. https://doi.org/10.1016/j.scitotenv.2020.141999

Humphreys, F.R., & Ironside, G.E. (1980). Charcoal from New South Wales species of timber. Forestry Commission of New South Wales.

Huwig, A., Freimund, S., Käppeli, O., & Dutler, H. (2001). Mycotoxin detoxication of animal feed by different adsorbents. Toxicology Letters, 122(2), 179–188. https://doi.org/10.1016/ s0378-4274(01)00360-5

Inyang, M.I., Bin, G., Ying, Y., Yingwen, X., Andrew, Z., Ahmed, M., Pratap. P., Yong, S.O., & Xinde, C. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), 406-433. https://doi.org/10.1080/10643389.2015.1096880

Islam, M.M., Ahmed, S.T., Kim, Y.J., Mun, H.S., Kim, Y.J., & Yang, C.J. (2014). Effect of sea tangle (Laminaria japonica) and charcoal supplementation as alternatives to antibiotics on growth performance and meat quality of ducks. Asian Australasian Journal of Animal Sciences, 27(2), 217–224. https://doi.org/ 10.5713/ajas.2013.13314

Iwakiri, R., Asano, R., & Honda, K. (2007). Effects of carbonaceous adsorbent on accumulation and excretion of dioxins in rat. Organohalogen Compound, 69, 2391-2394.

Jandosov, J.M., Mikhalovska, L.I., Howell, C.A., Chenchik, D.I., Kosher, B.K., Lyubchik, S.B., Silvestre-Albero, J., Ablaikhanova, N.T., Srailova, G.T., Tuleukhanov, S.T., & Mikhalovsky, S.V. (2017). Synthesis, morphostructure, surface chemistry and preclinical studies of nanoporous rice husk-derived Biochars for gastrointestinal detoxification. Eurasian Chemico-Technological Journal, 19(4), 303-313. http://doi.org/10.18321/ectj678

Jarczyk, A., Bancewicz, E., & Jędryczko, R. (2008). An attempt at inactivation of ochratoxin A in pigs’ feed with two feed-added adsorbents. Animal Science Paper and Report, 26(4), 269–276.

Jaynes, W., Zartman, R., & Hudnall, W. (2007). Aflatoxin B1 adsorption by clays from water and corn meal. Applied Clay Science, 36(1–3), 197-205. https://doi.org/10.1016/j.clay.2006.06.012

Jiang, J. F., Li, L. H., Cui, M. C., Zhang, F., Liu, Y. X., Liu, Y. H., Long, J. Y., & Guo, Y.F. (2018). Anaerobic digestion of kitchen waste: the effects of source, concentration, and temperature. Biochemical Engineering Journal, 135, 91–97. https://doi.org/10.3390/app8101804

Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73, 2483–2492. https://doi.org/10.2527/1995.7382483x

Joseph, S., Cowie, A.L., Van Zwieten, L., Bolan, N., Budai, A., Buss, W., Cayuela, M.L., Graber, E.R., Ippolito, J.A., Kuzyakov, Y., Luo, Y., Ok, Y.S., Palansooriya, K.N., Shepherd, J., Stephens, S., Weng, Z., & Lehmann, J. (2021). How biochar works, and when it doesn't: A review of mechanisms controlling soil and plant responses to biochar. GCB Bioenergy, 13, 1731–1764. https://doi.org/10.1111/gcbb.12885

Joseph, S., Pow, D., Dawson, K., Mitchell, D.R.G., Rawal, A., Hook, J., & Solaiman, Z.M. (2015). Feeding biochar to cows: An innovative solution for improving soil fertility and farm productivity. Pedosphere, 25(5), 666–679. https://doi.org/10.1016/ S1002-0160(15)30047-3

Joseph, S.D., Camps-Arbestain, M., Lin, Y., Munroe, P., Chia, C.H., & Hook, J. (2010). An investigation into the reactions of biochar in soil. Australian Journal of Soil Research, 48, 501-515. https://doi.org/10.1071/SR10009

Kalus, K., Koziel, J.A., & Opalinski, S. (2019). A review of biochar properties and their utilization in crop agriculture and livestock production. Applied Sciences, 9, 3494. https://doi.org/ 10.3390/app9173494

Kalus, K., Koziel, J.A., & Opaliński, S. (2019). A Review of Biochar Properties and Their Utilization in Crop Agriculture and Livestock Production. Applied Sciences, 9(17):3494. https://doi.org/10.3390/app9173494

Kameyama, K., Miyamoto, T., Iwata, Y., & Shiono, T. (2016). Influences of feedstock and pyrolysis temperature on the nitrate adsorption of biochar. Soil Science and Plant Nutrition, 62(2), 180-184. https://doi.org/10.1080/00380768.2015.1136553

Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M.L., Estavillo, J.M., & Wrage-Monnig, N. (2017). Biochar as a tool to reduce the agricultural greenhouse- gas burden–knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 25(2), 114–139. https://doi.org/10.3846/16486897.2017. 1319375

Kammann, C.I., Glaser, B., & Schmidt, H.P. (2016). Combining biochar and organic amendments. In S. Shackley, G. Ruysschaert, K. Zwart, & B. Glaser (Eds.) Biochar in European Soils and Agriculture: Science and Practice. London: Routledge (pp. 136-164).

Kana, J.R., Teguia, A., & Fomekong, A. (2012). Effect of substituting soybean meal with cowpea (Vigna unguiculata) supplemented with natural plant charcoals in broiler diet on growth performances and carcass characteristics. Iranian Journal of Applied Animal Science, 2(4), 377–381.

Kana, J.R., Teguia, A., Mungfu, B.M., & Tchoumboue, J. (2010). Growth performance and carcass characteristics of broiler chickens fed diets supplemented with graded levels of charcoal from maize cob or seed of Canarium schweinfurthii. Tropical Animal Health and Production, 43(1), 51-56. https://doi.org/10.1007/s11250-010-9653-8

Kawashima, A., Watanabe, S., Iwakiri, R., & Honda, K. (2009). Removal of dioxins and dioxin-like PCBs from fish oil by countercurrent supercritical CO2 extraction and activated carbon treatment. Chemosphere, 75(6), 788–794. https://doi.org/ 10.1016/j.chemosphere.2008.12.057

Kaye, B.M., Elliott, C.R.B., & Jalim, S.L. (2012). Methiocarb poisoning of a horse in Australia. Australian Veterinary Journal, 90(6), 221–224. https://doi.org/10.1111/j.1751-0813.2012. 00910.x

Khoa, MA., Quang, N.H., Thang, T.V., Phung, T.V., & Kien, T.T. (2018). Effect of tannin in green tea by-product in combination with bio-char supplemented into basal beef cattle diet on nutrient digestibility, methane production and animal performance. Open Journal of Animal Sciences, 08(03), 206–214. https://doi.org/10.4236/ojas.2018.83015

Kim, K.S., Kim, Y.H., Park, J.C., Yun, W., Jang, K.I., Yoo, D. I., Lee, D.H., Kim, B.G., & Cho, J.H. (2017). Effect of organic medicinal charcoal supplementation in finishing pig diets. Korean Journal of Agricultural Science, 44, 50-59. https://doi.org/10.7744/kjoas.20170006

Kiran, Y.K., Barkat, A., Xiao-qiang, C.U.I., Ying, F., Feng-shan, P., & Lin, T. (2017). Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. Journal of Integrative Agriculture, 16(3), 725-734

Koltowski, M., Charmas, B., Skubiszewska-ZieRba, J., & Oleszczuk, P. (2017). Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. Ecotoxicology and Environmental Safety, 136, 119–125. https://doi.org/10.1016/j.ecoenv.2016.10. 033

Kubena, L.F., Harvey, R.B., Phillips, T.D., Corrier, D.E., & Huff, W.E. (1990). Diminution of aflatoxicosis in growing chickens by the dietary addition of a hydrated, sodium calcium aluminosilicate. Poultry Science, 69, 727–735. https://doi.org/10.3382/ps.0690727

Kumar, A., Bhattacharya, T., Shaikh, W.A., Roy, A., Mukherjee, S., & Kumar, M. (2021). Performance evaluation of crop residue and kitchen waste-derived biochar for eco-efficient removal of arsenic from soils of the indo-gangetic plain: a step towards sustainable pollution management. Environmental Research, 200, 111758. https://doi.org/10.1016/j.envres.2021.111758

Kutlu, H.R., Ünsal, I., & Görgülü, M. (2001). Effects of providing dietary wood (oak) charcoal to broiler chicks and laying hens. Animal Feed Science and Technology, 90(3–4), 213-226 https://doi.org/10.1016/S0377-8401(01)00205-X

Lao, E.J., & Mbega, E.R. (2020). Biochar as a feed additive for improving the performance of farm animals. Malaysian Journal of Sustainable Agriculture, 4(2), 86-93. http://doi.org/10.26480/ mjsa.02.2020.86.93

Leng, R.A. (2018). Unravelling methanogenesis in ruminants, horses and kangaroos: The links between gut anatomy, microbial biofilms and host immunity. Animal Production Science, 58(7), 1175–1191. https://doi.org/10.1071/AN15710

Leng, R.A., Inthapanya, S., & Preston, T.R. (2012a). Biochar lowers net methane production from rumen fluid in vitro. Livestock Research for Rural Development, 24(6), 1.

Leng, R.A., Inthapanya, S., & Preston, T.R. (2012b). Methane production is reduced in an in vitro incubation when the rumen fluid is taken from cattle that previously received biochar in their diet. Gas, 1050(1488), 1367.

Leng, R.A., Inthapanya, S., & Preston, T.R. (2013). All biochars are not equal in lowering methane production in in vitro rumen incubations. Livestock Research for Rural Development, 25, 106.

Leng, R.A., Preston, T.R., & Inthapanya, S. (2012c). Biochar reduces enteric methane and improves growth and feed conversion in local “Yellow” cattle fed cassava root chips and fresh cassava foliage. Livestock Research for Rural Development, 24, Article#199.

Li, Y.Y., Jin, Y.Y., & Li, J.H. (2016). Enhanced split-phase resource utilization of kitchen waste by thermal pre-treatment. Energy, 98, 155–167. https://doi.org/10.1016/j.energy.2016.01.013

Man, K.Y., Chow, K.L., Man, Y.B., Mo, W.Y. and Wong, M.H. (2021). Use of biochar as feed supplements for animal farming. Critical Reviews in Environmental Science and Technology, 51(2), 187-217. https://doi.org/10.1080/10643389.2020.1721980

Mangold E. (1936). Die Verdaulichkeit der Futtermittel in ihrer Abhängigkeit von verschiedenen Einflüssen. Forschungsdienst—Reichsarbeitsgemeinschaften d. Landwirtschaftswissenschaft, 1, 862-867.

McFarlane, Z., Myer, P., Cope, E., Evans, N., Carson Bone, T., Biss, B., & Mulliniks, J. (2017). Effect of biochar type and size on in vitro rumen fermentation of Orchard Grass Hay. Agricultural Sciences, 08(04), 316–325. https://doi.org/10.4236/as.2017.84023

McKenzie R.A. (1991). Bentonite as therapy for Lantana camara poisoning of cattle. Australian Veterinary Journal, 68(4), 146–148. https://doi.org/10.1111/j.1751-0813.1991.tb03159.x

McLennan, M.W., & Amos, M.L. (1989). Treatment of lantana poisoning in cattle. Australian Veterinary Journal, 66(3), 93–94. https://doi.org/10.1111/j.1751-0813.1989.tb09754.x

Mekbungwan, A., Yamauchi, K., Sakaida, T., & Buwjoom, T. (2008). Effects of a charcoal powderwood vinegar compound solution in piglets for raw pigeon pea seed meal. Animal, 2(3), 366– 374. https://doi.org/10.1017/S1751731107001243

Mézes, M., Balogh, K., & Tóth, K. (2010). Preventive and therapeutic methods against the toxic effects of mycotoxins - a review. Acta veterinaria Hungarica, 58(1), 1–17. https://doi.org/10.1556/AVet.58.2010.1.1

Mirheidari, A., Torbatinejad, N.M., Shakeri, P., & Mokhtarpour, A. (2019). Effects of walnut shell and chicken manure biochar on in vitro fermentation and in vivo nutrient digestibility and performance of dairy ewes. Tropical Animal Health and Production, 51(8), 2153–2160. https://doi.org/10.1007/s11250-019-01909-y

Mohan, D., Pittman, C.U.Jr., & Steele, P. H. (2006). Pyrolysis of wood/biomass for biooil: A critical review. Energy & Fuels, 20, 848–889. https://doi.org/10.1021/ef050239

Nageswara Rao, S.B., & Chopra, R.C. (2001). Influence of sodium bentonite and activated charcoal on aflatoxin M1 excretion in milk of goats. Small Ruminant Resistance, 41, 203–213. https://doi.org/10.1016/S0921-4488(01)00216-4

Naka, K., Watarai, S., Tana, Inoue, K., Kodama, Y., Oguma, K., Yasuda, T., & Kodama, H. (2001). Adsorption effect of activated charcoal on enterohemorrhagic Escherichia coli. The Journal of Veterinary Medical Science, 63(3), 281–285. https://doi.org/10.1292/jvms.63.281

Naumann, H.D., Muir, J.P., Lambert, B.D., Tedeschi, L.O., & Kothmann, M.M. (2013). Condensed tannins in the ruminant environment: a perspective on biological activity. Journal of Agricultural Sciences, 1, 8-20. https://doi.org/10.1590/s1806-92902017001200009

Neuvonen, P.J., & Olkkola, K.T. (1988). Oral activated charcoal in the treatment of intoxications. Role of single and repeated doses. Medical Toxicology and Adverse Drug Experience, 3(1), 33–58. https://doi.org/10.1007/BF03259930

Novotny, E.H., Maia, C.M.F., Carvalho, M.T.M., & Madari, B.E. (2015). Biochar: Pyrogenic carbon for agricultural use—A critical review. Revista Brasileira de Ciência do Solo, 39(2), 321-344. https://doi.org/10.1590/01000683rbcs20140818

O’Toole, A., Andersson, D., Gerlach, A., Glaser, B., Kammann, C., Kern, J., & Srocke, F. (2016). Current and future applications for biochar. In Shackley, S., Ruysschaert, G., Zwart, K., & Glaser, B. (Eds.) Biochar in European Soils and Agriculture. Science And Practice (pp. 253–280), London, Routledge. https://doi.org/10.4324/9781315884462

Olkkola, K.T., & Neuvonen, P.J. (1989). Treatment of intoxications using single and repeated doses of oral activated charcoal. Journal de Toxicologie Clinique ett Experimentale, 9(4), 265–275.

O'Reilly, G.C., Huo, Y., Meale, S.J., & Chaves, A. V. (2021). Dose response of biochar and wood vinegar on in vitro batch culture ruminal fermentation using contrasting feed substrates. Translational Animal Science, 5(3), txab107. https://doi.org/10.1093/tas/txab107

Ozmaie, S. (2011). The effect of propranolol hydrochloride and activated charcoal in treatment of experimental oleander (Nerium oleander) poisoning in sheep. Toxicology Letters, 205, S91.

Palansooriya K.N., Yi, Y., Yiu, F.T., Binoy, S., Deyi, H., Xinde, C.E.M., Jörg, R., Ki-Hyun, K., & Yong, S.O. (2020). Occurrence of contaminants in drinking water sources and the potential of biochar for water quality improvement: A review.

Critical Reviews in Environmental Science and Technology, 50(6), 549-611. https://doi.org/10.1080/10643389.2019.1629803

Pass, M.A., & Stewart, C. (1984). Administration of activated charcoal for the treatment of lantana poisoning of sheep and cattle. Journal of Applied Toxicology, 4(5), 267–269. https://doi.org/10.1002/jat.2550040512

Patel, A.K., Singhania, R.R., Pal, A., Chen, C.W., Pandey, A., & Dong, C.D. (2022). Advances on tailored biochar for bioremediation of antibiotics, pesticides and polycyclic aromatic hydrocarbon pollutants from aqueous and solid phases. The Science of The Total Environment, 817, 153054. https://doi.org/10.1016/j.scitotenv.2022.153054

Peng, X., Ye, L. L., Wang, C. H., & Bo, S. (2011). Temperature and duration dependent rice straw derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and Tillage Research, 112(2), 159-166.

Pereira, R.C., Muetzel, S., Arbestain, M.C., Bishop, P., Hina, K., & Hedley, M. (2014). Assessment of the influence of biochar on rumen and silage fermentation: A laboratory scale experiment. Animal Feed Science and Technology, 196, 22–31. https://doi.org/10.1016/j.anifeedsci.2014.06.019

Peterson, S.C., Jackson, M.A., Kim, S., & Palmquist, D.E. (2012). Increasing biochar surface area: Optimization of ball milling parameters. Powder Technology, 228, 115-120. https://doi.org/0.5772/intechopen.82151

Poage, G.W.I., Scott, C.B., Bisson, M.G., & Hartmann, S.F. (2006). Activated charcoal attenuates bitterweed toxicosis in sheep. Journal of Range Management Archives, 53(1), 73-78. https://doi.org/10.2307/4003395

Prasai, T.P., Walsh, K.B., Bhattarai, S.P., Midmore, D.J., Van, T.T., Moore, R.J., & Stanley, D. (2016). Biochar, bentonite and zeolite supplemented feeding of layer chickens alters intestinal microbiota and reduces Campylobacter load. PLoS One, 11(4), e0154061. https://doi.org/10.1371/journal.pone.0154061

Prasai, T.P., Walsh, K.B., Midmore, D.J., & Bhattarai, S.P. (2018a). Effect of biochar, zeolite and bentonite feed supplements on egg yield and excreta attributes. Animal Production Science, 58(9), 1632

Prasai, T.P., Walsh, K.B., Midmore, D.J., Jones, B.E.H., & Bhattarai, S.P. (2018b). Manure from biochar, bentonite and zeolite feed supplemented poultry: Moisture retention and granulation properties. Journal of Environmental Management, 216, 82–88. https://doi.org/10.1016/j.jenvman.2017.08.040

Rashidi, N., Khatibjoo, A., Taherpour, K., Akbari-Gharaei, M., & Shirzadi, H. (2020). Effects of licorice extract, probiotic, toxin binder and poultry litter biochar on performance, immune function, blood indices and liver histopathology of broilers exposed to aflatoxin-B1. Poultry Science, 99(11), 5896–5906. https://doi.org/10.1016/j.psj.2020.08.034

Reddy, K.R. (2015). Characteristics and applications of biochar for environmental remediation: A review. Critical Reviews in Environmental Science and Technology, 45, 939-969 https://doi.org/10.1080/10643389.2014.924180

Rogosic, J., Moe, S.R., Skobic, D., Knezovic, Z., Rozic, I., Zivkovic, M., & Pavlicevic, J. (2009). Effect of supplementation with barley and activated charcoal on intake of biochemically diverse Mediterranean shrubs. Small Ruminant Research, 81(2–3), 79-84. https://doi.org/10.1016/j.smallrumres.2008.11.010

Rogosic, J., Pfister, J.A., Provenza, F.D., & Grbesa, D. (2006). The effect of activated charcoal and number of species offered on intake of Mediterranean shrubs by sheep and goats. Applied Animal Behaviour Science, 101(3–4):305-317. https://doi.org/10.1016/j.applanim.2006.01.012

Ronsse, F., Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. GCB Bioenergy, 5, 104-115 https://doi.org/10.1111/gcbb.12018

Safaei Khorram, M., Zhang, Q., Lin, D., Zheng, Y., Fang, H., & Yu, Y. (2016). Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications. Journal of environmental sciences (China), 44, 269–279. https://doi.org/10.1016/j.jes.2015.12.027

Saleem, A.M., Ribeiro, G.O., Yang, W.Z., Ran, T., Beauchemin, K.A., McGeough, E.J., & McAllister, T.A. (2018). Effect of engineered biocarbon on rumen fermentation, microbial protein synthesis, and methane production in an artificial rumen (RUSITEC) fed a high forage diet. Journal of Animal Science, 96, 3121–3130. https://doi.org/10. 1093/jas/sky204

Schmidt, H.P., Hagemann, N., Draper, K., & Kammann, C. (2019). The use of biochar in animal feeding. PeerJ, 7, e7373. https://doi.org/10.7717/peerj.7373.

Schmidt, H.P., Kammann, C., Hagemann, N., Leifeld, J., Bucheli, T. D., Sلnchez Monedero, M. A., & Cayuela, M. L. (2021). Biochar in agriculture –A systematic review of 26 global meta-analyses. GCB Bioenergy, 13, 1708–1730. https://doi.org/10.1111/ gcbb.12889

Schubert, D.C., Chuppava, B., Witte, F., Terjung, N. & Visscher, C. (2021) Effect of two different Biochars as a component of compound feed on nutrient digestibility and performance parameters in growing pigs. Frontiers in Animal Science, 2, 633958. https://doi.org/10.3389/fanim.2021.633958

Searchinger, T.D., Zeng, Z., Wang, D., Yang, L., Wu, J., Ziegler, A.D., Liu, M., Ciais, P., Yang, Z.L., Chen, D., & Chen, A. (2021). Deforestation-induced warming over tropical mountain regions regulated by elevation. Nature Geoscience, 14(1), 23-29. https://doi.org/10.1038/s41561-020-00666-0

Searchinger, T.D., Guo, Y., Chen, Y., Zhou, M., Pan, D., Yang, J., Wu, L., Cui, Z., Zhang, W., Zhang, F., & Ma, L. (2020). Air quality, nitrogen use efficiency and food security in China are improved by cost-effective agricultural nitrogen management. Nature Food, 1(10), 648-658. https://doi.org/10.1038/s43016-020-00162-z

Shakoor, M.B., Ali, S., Rizwan, M., Abbas, F., Bibi, I., Riaz, M., Khalil, U., Niazi, N.K., & Rinklebe, J. (2020). A review of biochar-based sorbents for separation of heavy metals from water. International Journal of Phytoremediation, 22(2), 111–126. https://doi.org/10.1080/15226514.2019.1647405

Shehata, A.A., Schrödl, W., Aldin, A.A., Hafez, H.M., & Krüger, M. (2013). The effect of glyphosate on potential pathogens and beneficial members of poultry microbiota in vitro. Current Microbiology, 66(4), 350–358. https://doi.org/10.1007/s00284-012-0277-2

Shi, Z., Yan, J., Ren, X., Wen, M., Zhao, Y., & Wang, C. (2021). Effects of biochar and thermally treated biochar on Eisenia fetida survival, growth, lysosomal membrane stability and oxidative stress. The Science of the Total Environment, 770, 144778. https://doi.org/10.1016/j.scitotenv.2020.144778

Skutetzky, A., & Starkenstein, E. (1914). Die neueren Arzneimittel und die pharmakologischen Grundlagen ihrer Anwendung. Berlin: Julius Springer Verlag.

Smalley, H.E., Crookshank, H.R., & Radeleff, R.D. (1971). Use of activated charcoal in preventing residues of ronnel in sheep. Journal of Agricultural and Food Chemistry, 19(2), 331–332. https://doi.org/10.1021/jf60174a015

Snyman, L.D., Schultz, R.A., Botha, C.J., Labuschagne, L., & Joubert, J.P. (2009). Evaluation of activated charcoal as treatment for Yellow tulp (Moraea pallida) poisoning in cattle. Journal of the South African Veterinary Association, 80(4), 274–275. https://doi.org/10.4102/jsava.v80i4.227

Sohi, S., Loez-Capel, S., Krull, E., & Bol, R. (2009). Biochar’s roles in soil and climate change: A review of research needs. CSIRO Land and Water Science Report, 5(09), 17-31 https://doi.org/10.4225/08/58597219a199a

Steinegger, P., & Menzi, M. (1955). Versuche über die Wirkung von Vitamin-Zusätzen nach Verfütterung von Adsorbentien an Mastpoulets. Gefluegelhof, 18, 165-176

Struhsaker, T.T., Cooney, D.O., & Siex, K.S. (1997). Charcoal consumption by zanzibar red colobus monkeys: Its function and its ecological and demographic consequences. International Journal of Primatology, 18, 61–72. https://doi.org/10.1023/A:1026341207045

Sullivan, A.L., & Ball, R. (2012). Thermal decomposition and combustion chemistry of cellulosic biomass. Atmospheric Environment, 47, 133-141. https://doi.org/10.1016/ j.atmosenv.2011.11.022

Sun, T., Levin, B.D., Guzman, J.J., Enders, A., Muller, D.A., Angenent, L.T., & Lehmann, J. (2017). Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications, 8, 14873. https://doi.org/10.1038/ncomms14873

Takekoshi, H., Suzuki, G., Chubachi, H., & Nakano, M. (2005). Effect of Chlorella pyrenoidosa on fecal excretion and liver accumulation of polychlorinated dibenzo-p-dioxin in mice. Chemosphere, 59(2), 297–304. https://doi.org/10.1016/ j.chemosphere.2004.11.026

Tan, X.F., Liu, Y.G., Gu, Y.L., Xu, Y., Zeng, G.M., Hu, X.J., & Li, J. (2016). Biochar based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333. https://doi.org/10.1016/j.biortech.2016.04.093

Tapio, I., Snelling, T.J., & Strozzi, F. (2017). The ruminal microbiome associated with methane emissions from ruminant livestock. Journal of Animal Science and Biotechnology, 8, 7. https://doi.org/10.1186/s40104-017-0141-0

Teleb, S.M., Nassr, D.E.S., & Nour, E.M. (2004). Synthesis and infrared spectra of alkaline earth metal carbonates formed by the reaction of metal salts with urea at high temperature. Bulletin of Materials Science, 27, 483-485.

Tiwary, A.K., Poppenga, R.H., & Puschner, B. (2009). In vitro study of the effectiveness of three commercial adsorbents for binding oleander toxins. Clinical toxicology (Philadelphia, Pa.), 47(3), 213–218. https://doi.org/10.1080/15563650802590314

Toth, J.D., & Dou, Z. (2016). Use and impact of biochar and charcoal in animal production systems. In: Guo M, He Z, Uchimiya SM, eds. Agricultural and Environmental Applications of Biochar: Advances and Barriers. Madison: Soil Science Society of America, 199-224 https://doi.org/10.2136/sssaspecpub63.2014.0043.5

Totusek, R., & Beeson, W.M. (1953). The nutritive value of wood charcoal for pigs. Journal of Animal Science, 12(2), 271-281

Tumuluru, J.S., Sokhansanj, S., Hess, J.R., Wright, C.T., & Boardman, R.D. (2011). A review on biomass torrefaction process and product properties for energy applications. Industrial Biotechnology, 7, 384-402. https://doi.org/10.1089/ind.2011.7.384

Usman, A.R., Ahmad, M., El-Mahrouky, M., Al-Omran, A., Ok, Y.S., Sallam, A., El-Naggar, A. H., & Al-Wabel, M.I. (2016). Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environmental Geochemistry and Health, 38(2), 511–521. https://doi.org/10.1007/s10653-015-9736-6

Van, D.T.T., Mui, N.T., & Ledin, I. (2006). Effect of method of processing foliage of Acacia mangium and inclusion of bamboo charcoal in the diet on performance of growing goats. Animal Feed Science and Technology, 130(3–4), 242-256. https://doi.org/10.1016/j.anifeedsci.2006.01.008

Villalba, J.J., Provenza, F.D., & Banner, R.E. (2002). Influence of macronutrients and activated charcoal on intake of sagebrush by sheep and goats. Journal of Animal Science, 80, 2099-2109. https://doi.org/10.1093/ansci/80.8.2099

Waheed, Q., Nahil, M., & Williams, P. (2013). Pyrolysis of waste biomass: Investigation of fast pyrolysis and slow pyrolysis process conditions on product yield and gas composition. Journal of the Energy Institute, 86(4), 233–241. https://doi.org/10.1179/ 1743967113Z. 00000000067

Wang, M., Wang, J.J., Tafti, N.D., Hollier, C.A., Myers, G., & Wang, X. (2019). Effect of alkali-enhanced biochar on silicon uptake and suppression of gray leaf spot development in perennial ryegrass. Crop Protection, 119, 9–16. https://doi.org/10.1016/ j.cropro.2019.01.013

Willson, N.L., Van, T.T., Bhattarai, S.P., Courtice, J.M., McIntyre, J.R., Prasai, T.P., & Stanley, D. (2019). Feed supplementation with biochar may reduce poultry pathogens, including Campylobacter hepaticus, the causative agent of spotty liver disease. PLoS One, 14(4), e0214471. https://doi.org/10.1371/journal.pone.0214471

Wilson, K.A., & Cook, R.M. (1970). Metabolism of xenobiotics in ruminants. Use of activated carbon as an antidote for pesticide poisoning in ruminants. Journal of Agricultural and Food Chemistry, 18(3), 437–440. https://doi.org/10.1021/jf60169a026

Winders, T.M., Jolly-Breithaupt, M.L., Freeman, C.B., Mark, B.M., Erickson, G.E., & Watson, A.K. (2018). Evaluating the effect of feeding biochar to cattle on methane production and diet digestibility.10th International Livestock Environment Symposium (ILES X) (p. 1). American Society of Agricultural and Biological Engineers, Omaha, Nebraska. https://doi.org/10.13031/iles.18-148

Winders, T.M., Jolly-Breithaupt, M.L., Wilson, H.C., MacDonald, J.C., Erickson, G.E., & Watson, A.K. (2019). Evaluation of the effects of biochar on diet digestibility and methane production from growing and finishing steers. Translational Animal Science, 3(2), 775–783. https://doi.org/10.1093/tas/txz027

Xu, C., Tan, X., Zhao, J., Cao, J., Ren, M., Xiao, Y., & Lin, A. (2021). Optimization of biochar production based on environmental risk and remediation performance: Take kitchen waste for example. Journal of Hazardous Materials, 416, 125785. https://doi.org/10.1016/j.jhazmat.2021.125785

Xu, C., Zhao, J., Yang, W., He, L., Wei, W., Tan, X., Wang, J., & Lin, A. (2020). Evaluation of biochar pyrolyzed from kitchen waste, corn straw, and peanut hulls on immobilization of Pb and

Cd in contaminated soil. Environmental Pollution (Barking, Essex: 1987), 261, 114133. https://doi.org/10.1016/j.envpol.2020.114133

Yang, Q., Cui, P., Liu, C., Fang, G., Huang, M., Wang, Q., Zhou, Y., Hou, H., & Wang, Y. (2021). In situ stabilization of the adsorbed Co2+ and Ni2+ in rice straw biochar based on LDH and its reutilization in the activation of peroxymonosulfate. Journal of Hazardous Materials, 416, 126215. https://doi.org/10.1016/ j.jhazmat.2021.126215

Yatzidis, H. (1972). Activated charcoal rediscovered. British Medical Journal, 4(5831), 51. https://doi.org/10.1136/ bmj.4.5831.51

Yoshimura, H., Kamimura, H., Oguri, K., Honda, Y., & Nakano, M. (1986). Stimulating effect of activated charcoal beads on fecal excretion of 2,3,4,7,8-pentachlorodibenzofuran in rats. Chemosphere, 15(3), 219-227. https://doi.org/10.1016/0045-6535(86)90017-2

Zhu, S., Huang, X., Ma, F., Wang, L., Duan, X., & Wang, S. (2018). Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environmental Science & Technology, 52(15), 8649-8658. https://doi.org/10.1021/acs.est.8b01817

Downloads

Published

2023-06-30

How to Cite

Nair, P. S., P S, S. M., Suresh, S., A J, S., K, S., S, A. K., P R, A., Krishnan, N., S, P., Chakraborty, S., Chopra, H., Akash, S., Amin, R., Dey, A., Alagawany, M., Chandran, D., & Dhama, K. (2023). Beneficial impacts of biochar as a potential feed additive in animal husbandry. Journal of Experimental Biology and Agricultural Sciences, 11(3), 479–499. https://doi.org/10.18006/2023.11(3).479.499

Issue

Section

REVIEW ARTICLES