

Volume 78 (2022)

Supporting information for article:

A three-dimensional gadolinium organic framework based on a pyridinedicarboxylic acid organic linker with a paddle-wheel-type network structure

Ranjay K. Tiwari, Mukesh Kumar Saini, Jogendra N. Behera and Firasat Hussain

Figure S1. PXRD pattern of CP-1.

Bond valence sum calculation

The bond valence sum (BVS) calculation of CP-1 was calculated from the formula as given below S = exp[(Ro-R)/B]

And

$$V = \Sigma S$$

Where V is the oxidation state of cation and S is bond valence

Where B = 0.37, Ro for Gd-O = 2.031 Å and Gd-N = 2.146 Å and R is Gd-O and Gd-N bond length

 $S1 = \exp[(2.031 - 2.3704)/0.37] = 0.3996$ $S2 = \exp[(2.031 - 2.3704)/0.37] = 0.3996$ $S3 = \exp[(2.031 - 2.3229)/0.37] = 0.45434$ $S4 = \exp[(2.031 - 2.3229)/0.37] = 0.45434$ $S5 = \exp[(2.031 - 2.3916)/0.37] = 0.37734$ $S6 = \exp[(2.031 - 2.3916)/0.37] = 0.37734$ $S7 = \exp[(2.146 - 2.5702)/0.37] = 0.22253$ $S8 = \exp[(2.146 - 2.5702)/0.37] = 0.22253$ $And V = \Sigma S$ V = S1 + S2 + S3 + S4 + S5 + S6 + S7 + S8 = 2.907

(1) I. D. Brown, Chem. Rev., 2009, 109, 6858-6919.

Table S1. Hydrogen bonding table for CP-1#										
D–H····A	Symmetry of A	D–H	Н…А	D-A	∠D–H…A					
		1								
N2−H2A…O1	-1/4+x,1/4+y,1/2-z	0.86	2.27	3.0043(1)	144					
N2-H2A…O2	-1/4+x,1/4+y,1/2-z	0.86	2.10	2.8399(1)	144					
С2—Н2…О2	1-x,-y,-z	0.93	2.60	3.3088(1)	134					
С5—Н5…О4	1/2-x,1/2-y,-z	0.91	2.36	2.9606(1)	124					

[#]Where 'D' is donor and 'A' is acceptor, the bond lengths are in (Å) and angles are in (°).

			la conta angles							
1										
Gd1-01 ^b	2.3704(18)	Gd1-N1 ^c	2.5702(19)	N2-C8	1.424(6)					
Gd1-01 ^c	2.3704(18)	O1-C6	1.264(4)	C1-C2	1.368(4)					
Gd1-03	2.3229(18)	O2-C6	1.223(4)	C1-C6	1.518(4)					
Gd1-03 ^a	2.3229(18)	O3-C7	1.236(3)	C2-C3	1.366(5)					
Gd1-04 ^d	2.3916(18)	O4-C7	1.237(3)	C3-C4	1.363(4)					
Gd1-04 ^e	2.3916(18)	N1-C1	1.312(3)	C4-C5	1.369(4)					
Gd1-N1 ^b	2.5702(19)	N1-C5	1.342(3)	C4-C7	1.499(3)					
O3 ^a -Gd1-O3	117.08(11)	O1 ^b -Gd1-N1 ^c	71.81(7)	N1-C1-C2	121.9(3)					
03 ^a -Gd1-01 ^b	79.48(8)	01 ^c -Gd1-N1 ^c	64.25(6)	N1-C1-C6	114.4(2)					
03-Gd1-01 ^b	150.98(8)	O4 ^d -Gd1-N1 ^c	143.54(7)	C2-C1-C6	123.7(3)					
O3 ^a -Gd1-O1 ^c	150.98(8)	O4 ^e -Gd1-N1 ^c	73.39(7)	C3-C2-C1	120.4(3)					
03-Gd1-01 ^c	79.48(8)	O3 ^a -Gd1-N1 ^b	80.94(7)	C4-C3-C2	118.8(3)					
01 ^b -Gd1-01 ^c	96.98(10)	O3-Gd1-N1 ^b	138.20(7)	C3-C4-C5	117.3(3)					
03 ^a -Gd1-04 ^d	77.79(9)	O1 ^b -Gd1-N1 ^b	64.25(6)	C3-C4-C7	122.8(2)					
03-Gd1-04 ^d	74.40(8)	O1 ^c -Gd1-N1 ^b	71.81(7)	C5-C4-C7	119.9(2)					
01 ^b -Gd1-O4 ^d	134.34(7)	O4 ^d -Gd1-N1 ^b	73.39(7)	N1-C5-C4	124.4(2)					
01 ^c -Gd1-04 ^d	84.90(7)	O4 ^e -Gd1-N1 ^b	143.54(7)	O2-C6-O1	124.8(3)					
03 ^a -Gd1-04 ^e	74.40(8)	N1 ^c -Gd1-N1 ^b	111.44(9)	O2-C6-C1	118.6(3)					
03-Gd1-04 ^e	77.79(9)	C1-N1-C5	117.2(2)	01-C6-C1	116.6(2)					
01 ^b -Gd1-04 ^e	84.90(7)	C1-N1-Gd1 ^g	118.00(17)	O3-C7-O4	126.1(2)					
01 ^c -Gd1-04 ^e	134.34(7)	C5-N1-Gd1 ^g	124.32(16)	O3-C7-C4	116.4(2)					
04 ^d -Gd1-04 ^e	125.20(10)	C8-N2-C8 ^f	116.2(6)	O4-C7-C4	117.5(2)					
O3 ^a -Gd1-N1 ^c	138.20(7)	C6-O1-Gd1 ^g	126.09(17)	C7-04-Gd1 ^e	140.38(17)					
03-Gd1-N1 ^c	80.94(7)	C7-O3-Gd1	151.57(19)							

[#]Symmetry transformations used to generate equivalent atoms:

a) x,-y+7/4,-z+3/4; b) x+1/4,-y+3/2,z-1/4; c) x+1/4,y+1/4,-z+1; d) -x+3/4,y,-z+3/4;

e) -x+3/4,-y+7/4,z; f) -x+3/4,-y+3/4,z; g) x-1/4,y-1/4,-z+1

Inside Atom	Outside Atom								
		1							
Atom	Gd	O 0.8	Ν	Н	С	All			
С	•	17.5 5.9		9.7	0.8	11.3			
Gd		2.1 6.0	2.6	13.6	5.0	38.6			
Н		32.3		13.5	0.9	20.3			
Ν	0.9			0.9		3.9			
0	2.4		1.9	15.2	0.4	25.9			
All	3.2		4.5	52.9	7.0				

Table S3.	Filtering fingerprint by element type. Surface area included (as percentage of the tot	al
surface are	a) for close contacts between atoms inside and outside the surface for CP-1.	

Table S4. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å×10³) for CP-1 U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	X	У	Ζ	U(eq)		X	Y	Ζ	U(eq)	
1										
Gd1	5009(1)	8750	3750	20(1)	C2	4358(3)	5906(3)	5008(2)	108(2)	
01	3386(1)	5284(1)	6131(1)	42(1)	C3	4353(2)	6504(2)	4692(2)	87(2)	
O2	4222(2)	4675(2)	5684(1)	138(2)	C4	3803(1)	7018(2)	4746(1)	35(1)	
03	4333(1)	7967(1)	4273(1)	53(1)	C5	3304(1)	6916(1)	5130(1)	33(1)	
O4	3105(1)	7897(1)	4301(1)	50(1)	C6	3820(2)	5211(2)	5759(1)	62(1)	
N1	3317(1)	6344(1)	5452(1)	30(1)	C7	3740(1)	7684(1)	4412(1)	30(1)	
N2	3750	3750	6489(2)	98(2)	C8	4412(3)	3880(3)	6772(2)	109(2)	
C1	3839(2)	5844(2)	5383(1)	54(1)						

Table S5. Anisotropic displacement parameters (Å2×103) for CP-1. The anisotropic displacement factor exponent takes the form: $-2 \pi 2$ [h2 a*2 U11 + ... + 2 h k a* b* U12]

	U11	U22	U33	U23	U13	U12		U11	U22	U33	U23	U13	U12
						1							
Gd	22(1)	18(1	18(1)	-	0	0	C	125(4	99(3	99(3)	67(3	82(3	86(3
1 01	51(1)) 37(1	39(1)	3(1) 12(1	9(1)	19(1)	2 C) 92(3)) 91(3	79(3)) 54(2) 60(2) 57(2
O2	204(4) 96(2	114(3) 71(2	107(3	114(3	C C	37(1)) 36(1	31(1)) 10(1) 5(1)) 6(1)
03) 45(1)) 56(1) 58(1)) 23(1) 11(1)) -	4 C	34(1)) 33(1	34(1)) 11(1	4(1)	7(1)
O4	43(1)) 55(1	51(1)) 30(1	4(1)	$11(1) \\ 14(1)$	5 C	85(2)) 46(2	54(2)) 24(2	31(2	36(2
N1	32(1)) 32(1	26(1)) 6(1)	4(1)	6(1)	6 C	38(1)) 29(1	23(1)) 9(1)) 4(1)) 1(1)
N2	197(7) 53(3	44(3)	0	0	-	7 C	130(5) 96(4	100(4	24(3	-	34(3
C1) 68(2)) 46(2	48(2)	20(1	24(2)	26(3) 30(2)	8))))	6(4))
))									