Skip to main content

Advertisement

Log in

Cooling Analysis of Cylindrical Void Method for an Injection Mould in Injection Moulding Process

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

As a matter of fact, the cooling method selection is one of the most important steps in the design of injection mould. However, inappropriate cooling system will result in many undesired defects such as differential shrinkage and warpage on the moulded part. From this point of view, the comprehensive study of cylindrical void method (CVM) has been attempted in this study which is known as an alternative effective cooling method. Therefore, this study employs the three-dimensional time-dependent numerical analysis to determine the performance of cooling injection moulding. Initially, a finite element method is used to solve the system of equations of the flow and heat transfer problem. Subsequently, the temperature fields and other analysis results have been obtained via ANSYS Workbench. The study reveals that the Nusselt number, Biot Number and heat flux at the fluid–core interface are smaller when the CVM method is being used compared to the straight-drilled method. These results are mainly attributed to the presence of big vortices which prevent a complete heat transfer. Consequently, the use of the CVM method does not improve the cooling efficiency, but it is a good idea and requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhou, H.: Computer Modeling for Injection Molding: Simulation, Optimization, and Control. Wiley, Hoboken (2012)

    Google Scholar 

  2. Shayfull, Z.; Sharif, S.; Zain, A.M.; Ghazali, M.F.; Saad, R.M.: Potential of conformal cooling channels in rapid heat cycle molding: a review. Adv. Polym. Technol. 3, 1 (2014)

    Google Scholar 

  3. Wang, Y.; Yu, K.M.; Wang, C.C.: Spiral and conformal cooling in plastic injection molding. Comput. Aided Des. 63, 1–11 (2015)

    Article  Google Scholar 

  4. Venkatesh, G.; Kumar, Y.R.; Raghavendra, G.: Comparison of straight line to conformal cooling channel in injection molding. Mater. Today-Proc. 4(2), 1167–1173 (2017)

    Article  Google Scholar 

  5. Rees, H.: Understanding Injection Mold Design. Hanser, Munich (2001)

    Book  Google Scholar 

  6. Park, H.S.; Dang, X.P.: Optimization of conformal cooling channels with array of baffles for plastic injection mold. Int. J. Precis. Eng. Manuf. 11, 879–890 (2010)

    Article  Google Scholar 

  7. Hassan, H.; Regnier, N.; Le Bot, C.; Defaye, G.: 3D study of cooling system effect on the heat transfer during polymer injection molding. Int. J. Therm. Sci. 49, 161–169 (2010)

    Article  Google Scholar 

  8. Saifullah, A.B.M.; Masood, S.H.; Sbarski, I.: Thermal–structural analysis of bi-metallic conformal cooling for injection moulds. Int. J. Adv. Manuf. Technol. 62, 123–133 (2012)

    Article  Google Scholar 

  9. Shayfull, Z.; Sharif, S.; Zain, A.M.; Saad, R.M.; Fairuz, M.A.: Milled groove square shape conformal cooling channels in injection molding process. Mater. Manuf. Process. 28, 884–891 (2013)

    Google Scholar 

  10. Rahim, S.Z.A.; Sharif, S.; Zain, A.M.; Nasir, S.M.; Mohd, S.R.: Improving the quality and productivity of molded parts with a new design of conformal cooling channels for the injection molding process. Adv. Polym. Technol. 35, 1 (2016)

    Article  Google Scholar 

  11. Kitayama, S.; Miyakawa, H.; Takano, M.; Aiba, S.: Multi-objective optimization of injection molding process parameters for short cycle time and warpage reduction using conformal cooling channel. Int. J. Adv. Manuf. Technol. 88, 1–10 (2016)

    Article  Google Scholar 

  12. Renko, J.B.; Kemeny, D.M.; Nyiro, J.; Kovacs, D.: Comparison of cooling simulations of injection moulding tools created with cutting machining and additive manufacturing. Mater. Today-Proc. 12, 462–469 (2019)

    Article  Google Scholar 

  13. Kazmer, D.O.: Injection Mold Design Engineering. Hanser, Munich (2007)

    Book  Google Scholar 

  14. Jahan, S.A.; El-Mounayri, H.: Optimal conformal cooling channels in 3D printed dies for plastic injection molding. Procedia Manuf. 5, 888–900 (2016)

    Article  Google Scholar 

  15. Lucchetta, G.; Masato, D.; Sorgato, M.: Optimization of mold thermal control for minimum energy consumption in injection molding of polypropylene parts. J. Clean. Prod. 182, 217–226 (2018)

    Article  Google Scholar 

  16. Fu, J.; Ma, Y.: A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time. Robot. Comput.-Int. Manuf. 56, 66–74 (2019)

    Article  Google Scholar 

  17. Li, C.L.; Li, C.G.; Mok, A.C.K.: Automatic layout design of plastic injection mould cooling system. Comput. Aided Des. 37, 645–662 (2005)

    Article  Google Scholar 

  18. Hassan, H.; Regnier, N.; Pujos, C.; Arquis, E.; Defaye, G.: Modeling the effect of cooling system on the shrinkage and temperature of the polymer by injection molding. Appl. Therm. Eng. 30, 1547–1557 (2010)

    Article  Google Scholar 

  19. Nian, S.C.; Wu, C.Y.; Huang, M.S.: Warpage control of thin-walled injection molding using local mold temperatures. Int. Commun. Heat Mass Transf. 61, 102–110 (2015)

    Article  Google Scholar 

  20. Park, H.S.; Pham, N.H.: Design of conformal cooling channels for an automotive part. Int. J. Automot. Technol. 10, 87–93 (2009)

    Article  Google Scholar 

  21. Ferreira, J.C.; Mateus, A.: Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding. J. Mater. Process. Technol. 142, 508–516 (2003)

    Article  Google Scholar 

  22. Tang, S.H.; Kong, Y.M.; Sapuan, S.M.; Samin, R.; Sulaiman, S.: Design and thermal analysis of plastic injection mould. J. Mater. Process. Technol. 171, 259–267 (2006)

    Article  Google Scholar 

  23. Gloinn, T.O.; Hayes, C.; Hanniffy, P.; Vaugh, K.: FEA simulation of conformal cooling within injection moulds. Int. J. Manuf. Res. 2, 162–170 (2007)

    Article  Google Scholar 

  24. Mohamed, O.A.; Masood, S.H.; Saifullah, A.: A simulation study of conformal cooling channels in plastic injection molding. Int. J. Eng. Res. 2, 344–348 (2013)

    Google Scholar 

  25. Xiao, C.L.; Huang, H.X.; Yang, X.: Development and application of rapid thermal cycling molding with electric heating for improving surface quality of microcellular injection molded parts. Appl. Therm. Eng. 100, 478–489 (2016)

    Article  Google Scholar 

  26. Saifullah, A.B.M.; Masood, S.H.; Nikzad, M.; Brandt, M.: An investigation on fabrication of conformal cooling channel with direct metal deposition for injection moulding. In: Sereni, J.G. (ed.) Reference Module in Materials Science and Materials Engineering. Elsevier, Amsterdam (2016)

    Google Scholar 

  27. Sun, Y.F.; Lee, K.S.; Nee, A.Y.C.: Design and FEM analysis of the milled groove insert method for cooling of plastic injection moulds. Int. J. Adv. Manuf. Technol. 24, 715–726 (2004)

    Article  Google Scholar 

  28. Kitayama, S.; Tamada, K.; Takano, M.; Aiba, S.: Numerical optimization of process parameters in plastic injection molding for minimizing weldlines and clamping force using conformal cooling channel. J. Manuf. Process. 32, 782–790 (2018)

    Article  Google Scholar 

  29. Park, H.S.; Dang, X.P.: Development of a smart plastic injection mold with conformal cooling channels. Procedia Manuf. 10, 48–59 (2017)

    Article  Google Scholar 

  30. Dimla, E.: Design considerations of conformal cooling channels in injection moulding tools design: an overview. J. Therm. Eng. 1, 627–635 (2015)

    Google Scholar 

  31. Dimla, D.E.; Camilotto, M.; Miani, F.: Design and optimisation of conformal cooling channels in injection moulding tools. J. Mater. Process. Technol. 164, 1294–1300 (2005)

    Article  Google Scholar 

  32. Ordieres-Mere, J.; Bello-García, A.; Munoz-Munilla, V.; Del-Coz-Diaz, J.J.: Finite element analysis of the hyper-elastic contact problem in automotive door sealing. J. Non-Cryst. Solids 354, 5331–5333 (2008)

    Article  Google Scholar 

  33. Del Coz, D.J.J.; Garcia Nieto, P.J.; Bello Garcia, A.; Guerrero Munoz, J.; Ordieres Mere, J.: Finite volume modeling of the non-isothermal flow of a non-Newtonian fluid in a rubber’s extrusion die. J. Non-Cryst. Solids 354, 5334–5336 (2008)

    Article  Google Scholar 

  34. Del Coz Diaz, J.J.; Garcia Nieto, P.J.; Ordieres Mere, J.; Bello Garcia, A.: Computer simulation of the laminar nozzle flow of a non-Newtonian fluid in a rubber extrusion process by the finite volume method and experimental comparison. J. Non-Cryst. Solids 353, 981–983 (2007)

    Article  Google Scholar 

  35. Khelfi, D.; Abdellah, El-HA; Ait-Messaoudene, N.: Modeling of a 3D plasma thermal spraying and the effect of the particle injection angle. Revue Des Energies Renouvelables CISM 8, 205–216 (2008)

    Google Scholar 

  36. Launder, B.E.; Spalding, D.B.: Mathematical Models of Turbulence. Academic Press, London (1972)

    MATH  Google Scholar 

  37. ANSYS CFX: Manual Theory Guide of ANSYS CFX, Ver 13.0. ANSYS Inc. (2012).

  38. Kumbhare, M.B.; Dawande, S.D.: Performance evaluation of plate heat exchanger in laminar and turbulent flow conditions. Int. J. Chem. Sci. Appl. 4, 77–83 (2013)

    Google Scholar 

  39. Shabany, Y.: Heat Transfer. CRC Press, Boca Raton (2011)

    Google Scholar 

  40. Zink, B.; Kovacs, N.K.; Kovacs, J.G.: Thermal analysis based method development for novel rapid tooling applications. Int. Commun. Heat Mass Transf. 108, 104297 (2019)

    Article  Google Scholar 

  41. Biondani, F.G.; Bissacco, G.; Mohanty, S.; Tang, P.T.; Norgaard Hansen, H.: Multi-metal additive manufacturing process chain for optical quality mold generation. J. Mater. Process. Technol. 277, 116451 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the reviewer(s) for the helpful advice and comments provided. The authors wish to thank the DGRSDT/MESRS, Algeria, for their financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdellah Abdellah El-Hadj or Shayfull Zamree Abd Rahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdellah El-Hadj, A., Abd Rahim, S.Z., Mat Saad, M.N. et al. Cooling Analysis of Cylindrical Void Method for an Injection Mould in Injection Moulding Process. Arab J Sci Eng 45, 5285–5294 (2020). https://doi.org/10.1007/s13369-020-04396-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04396-8

Keywords

Navigation