Skip to main content
Log in

Analyzing uncertainty in cardiotocogram data for the prediction of fetal risks based on machine learning techniques using rough set

  • Original Research
  • Published:
Journal of Ambient Intelligence and Humanized Computing Aims and scope Submit manuscript

Abstract

The key focus of this venture is to evaluate the calibration of classifiers built on rules, trees, and functions by exploring the uncertain information that exists in the Cardiotocography (CTG) dataset. Classification is imperative in diagnosing the health of the foetus and new born specifically in critical cases. It facilitates the obstetricians in acquiring the information of foetal well-being in pregnancy, substantially for the woman with complications. The research aims to classify the CTG data points into normal, suspicious and pathologic. Rules, trees, and function-based classifiers are applied in machine learning for predicting the health of the new born. Particle Swarm Optimization (PSO) is used in pre-processing for selecting the relevant features. Rough set approximations are exploited in extracting the uncertain information from the data set. The result reveals the importance of useful information present in the uncertain data during classification. In this paper, the overall highest accuracy is displayed by Random Forest classifier with 99.57% and a tree-based approach has shown its supremacy over other approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Afridi R, Iqbal Z, Khan M, Ahmad A, Naseem R (2019) Fetal heart rate classification and comparative analysis using cardiotocography data and known classifiers. Int J Grid Distrib Comput 12(1):31–42

    Article  Google Scholar 

  • Amin B, Gamal M, Salama AA, Mahfouz K, El-Henawy IM (2019) Classifying cardiotocography data based on rough neural network. Mach Learn 10:8

    Google Scholar 

  • Anitha A, Kannan E (2014a) Isolating critical data points from boundary region with feature selection. In: 2014 IEEE international conference on computational intelligence and computing research, (pp 1–4), IEEE

  • Anitha A, Kannan E (2014b) A constructive distance-based boundary detection approach with numeric variables. J Theor Appl Inf Technol 67:3

    Google Scholar 

  • Ayres-de-Campos D, Bernardes J, Garrido A, Marques-de-Sa J, Pereira-Leite L (2000) SisPorto 2.0: a program for automated analysis of cardiotocograms. J Maternal-Fetal Med 9(5):311–318

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  • Cesarelli M, Romano M, Bifulco P (2009) Comparison of short term variability indexes in cardiotocographic foetal monitoring. Comput Biol Med 39(2):106–118

    Article  Google Scholar 

  • Cömert Z, Şengür A, Budak Ü, Kocamaz AF (2019) Prediction of intrapartum fetal hypoxia considering feature selection algorithms and machine learning models. Health Inf Sci Syst 7(1):17

    Article  Google Scholar 

  • Das S, Roy K, Saha CK (2019) Establishment of automated technique of FHR baseline and variability detection using CTG: statistical comparison with expert’s analysis. Int J Inf Eng Electronic Business 11:1

    Google Scholar 

  • Deng W, Yao R, Zhao H, Yang X, Li G (2019) A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm. Soft Comput 23(7):2445–2462

    Article  Google Scholar 

  • Devane D, Lalor JG, Daly S, McGuire W, Cuthbert A, Smith V (2017) Cardiotocography versus intermittent auscultation of fetal heart on admission to labour ward for assessment of fetal wellbeing. Cochrane Datab Syst Rev 2017:1

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27(8):861–874

    Article  MathSciNet  Google Scholar 

  • Fergus P, Huang DS, Hamdan H (2016) Prediction of intrapartum hypoxia from cardiotocography data using machine learning. In: Applied computing in medicine and health (pp 125–146), Morgan Kaufmann

  • Frank E, Hall MA (2011) Data mining: practical machine learning tools and techniques. Morgan Kaufmann

  • Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The WEKA data mining software: an update. ACM SIGKDD Explor Newsl 11(1):10–18

    Article  Google Scholar 

  • Heidari E, Sobati MA, Movahedirad S (2016) Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN). Chemometr Intell Lab Syst 155:73–85

    Article  Google Scholar 

  • Karabulut EM, Ibrikci T (2014) Analysis of cardiotocogram data for fetal distress determination by decision tree based adaptive boosting approach. J Comput Commun 2(9):32–37

    Article  Google Scholar 

  • Kaur G, Chhabra A (2014) Improved J48 classification algorithm for the prediction of diabetes. Int J Comput Appl 98:22

    Google Scholar 

  • Keddachi K, Theljani F (2016) Fetal risk classification based on cardiotocography data: a kernel-based approach. In: Proceedings of the Second International Afro-European Conference for Industrial Advancement AECIA 2015 (pp 327–337). Springer, Cham

  • Loh WY (2011) Classification and regression trees. Wiley Interdiscipl Rev Data Min Knowl Discov 1(1):14–23

    Article  Google Scholar 

  • Macones GA, Hankins GD, Spong CY, Hauth J, Moore T (2008) The 2008 National Institute of Child Health and Human Development workshop report on electronic fetal monitoring: update on definitions, interpretation, and research guidelines. J Obstet Gynecol Neonatal Nurs 37(5):510–515

    Article  Google Scholar 

  • Mahajan A, Ganpati A (2014) Performance evaluation of rule based classification algorithms. Int J Adv Res Comput Eng Technol 3(10):3546–3550

    Google Scholar 

  • Molla MI, Jui JJ, Bari BS, Rashid M, Hasan MJ (2019) Cardiotocogram Data Classification Using Random Forest Based Machine Learning Algorithm. In: Proceedings of the 11th national technical seminar on unmanned system technology 2019 (pp. 357–369). Springer, Singapore

  • Moradi P, Gholampour M (2016) A hybrid pa rticle swarm optimization for feature subset selection by integrating a novel local search strategy. Appl Soft Comput 43:117–130

    Article  Google Scholar 

  • Moslehi F, Haeri A (2019) An evolutionary computation-based approach for feature selection. J Ambient Intell Hum Comput 2019:1–13

    Google Scholar 

  • Newman DJ, Hettich S, Blake CL, Merz CJ, Aha DW (1998) UCI repository of machine learning databases. In: Department of Information and Computer Science, University of California, Irvine, CA. In: 1998 of Conference, http://archive.ics.uci.edu/ml/datasets.html

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222

    Article  Google Scholar 

  • Patil TR, Sherekar SS (2013) Performance analysis of j48 and j48 classification algorithm for data classification. Int J Comput Sci Appl 6:2

    Google Scholar 

  • Pawlak Z (1982) Rough sets. Int J Comput Inform Sci 11(5):341–356

    Article  MATH  Google Scholar 

  • Platt J (1998) Sequential minimal optimization: a fast algorithm for training support vector machines

  • Potharaju SP, Sreedevi M, Ande VK, Tirandasu RK (2019) Data mining approach for accelerating the classification accuracy of cardiotocography. Clin Epidemiol Glob Health 7(2):160–164

    Article  Google Scholar 

  • Rajathi GM (2020) Optimized radial basis neural network for classification of breast cancer images. J Ambient Intell Hum Comput 2020:1–13

    Google Scholar 

  • Ravi RV, Subramaniam K, Roshini TV, Muthusamy SPB, Venkatesan GP (2019) Optimization algorithms, an effective tool for the design of digital filters; a review. J Ambient Intell Hum Comput 2019:1–17

    Google Scholar 

  • Rezaeian A, Rezaeian M, Khatami SF, Khorashadizadeh F, Moghaddam FP (2020) Prediction of mortality of premature neonates using neural network and logistic regression. J Ambient Intell Hum Comput 2020:1–9

    Google Scholar 

  • Sathiaraj D, Triantaphyllou E (2012) On identifying critical nuggets of information during classification tasks. IEEE Trans Knowl Data Eng 25(6):1354–1367

    Article  Google Scholar 

  • Shah SAA, Aziz W, Arif M, Nadeem MSA (2015) Decision trees based classification of cardiotocograms using bagging approach. In: 2015 13th International Conference on Frontiers of Information Technology (FIT) (pp 12–17), IEEE

  • Shahzad W, Asad S, Khan MA (2013) Feature subset selection using association rule mining and JRip classifier. Int J Phys Sci 8(18):885–896

    Article  Google Scholar 

  • Shehadeh M, Ebrahimi N, Ochigbo A (2012) Predicting the type of nanostructure using data mining techniques and multinomial logistic regression. Procedia Comput Sci 12:392–397

    Article  Google Scholar 

  • Silwattananusarn T, Kanarkard W, Tuamsuk K (2016) Enhanced classification accuracy for cardiotocogram data with ensemble feature selection and classifier ensemble. J Comput Commun 4(4):20–35

    Article  Google Scholar 

  • Smith V, Begley C, Newell J, Higgins S, Murphy DJ, White MJ, Devane D (2019) Admission cardiotocography versus intermittent auscultation of the fetal heart in low-risk pregnancy during evaluation for possible labour admission—a multicentre randomised trial: the ADCAR trial. BJOG Int J Obstetr Gynaecol 126(1):114–121

    Article  Google Scholar 

  • Spilka J, Chudáček V, Janků P, Hruban L, Burša M, Huptych M, Lhotská L et al (2014) Analysis of obstetricians’ decision making on CTG recordings. J Biomed Inform 51:72–79

    Article  Google Scholar 

  • Subasi A, Kadasa B, Kremic E (2020) Classification of the cardiotocogram data for anticipation of fetal risks using bagging ensemble classifier. Procedia Comput Sci 168:34–39

    Article  Google Scholar 

  • Thangaraj M, Vijayalakshmi CR (2013) Performance study on rule-based classification techniques across multiple database relations. Int J Appl Inf Syst 5(4):1–7

    Google Scholar 

  • Xue B, Zhang M, Browne WN (2014) Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms. Appl Soft Comput 18:261–276

    Article  Google Scholar 

  • Yao Y (2008) Probabilistic rough set approximations. Int J Approx Reason 49(2):255–271

    Article  MATH  Google Scholar 

  • Yılmaz E (2016) Fetal state assessment from cardiotocogram data using artificial neural networks. J Med Biol Eng 36(6):820–832

    Article  Google Scholar 

  • Zeng X, Luo G (2017) Progressive sampling-based Bayesian optimization for efficient and automatic machine learning model selection. Health Inf Sci Syst 5(1):2

    Article  Google Scholar 

  • Zhang Y, Zhao Z (2017) Fetal state assessment based on cardiotocography parameters using PCA and AdaBoost. In: 2017 10th international congress on image and signal processing, BioMedical Engineering and Informatics (CISP-BMEI) (pp 1–6), IEEE

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vijayasarathy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, E., Ravikumar, S., Anitha, A. et al. Analyzing uncertainty in cardiotocogram data for the prediction of fetal risks based on machine learning techniques using rough set. J Ambient Intell Human Comput (2021). https://doi.org/10.1007/s12652-020-02803-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12652-020-02803-4

Keywords

Navigation