Skip to main content

Advertisement

Log in

Improvement of Cerebral Metabolism Mediated by Ro5-4864 is Associated with Relief of Intracranial Pressure and Mitochondrial Protective Effect in Experimental Brain Injury

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

To investigate the possible impact of reduction of mitochondrial membrane permeabilization by modulation of the 18 kDa translocator protein mediated by Ro5-4864 over post-traumatic cerebral edema and metabolic crisis.

Methods

Cerebral microdialysis and intracranial pressure (ICP) monitoring were performed in Sprague–Dawley rats treated by intraperitoneal injection of either dimethylsulfoxide (vehicle) or Ro5-4864 following cortical contusion and further correlated with quantitative assessment of mitochondrial damage, water content in the injured tissue, modified neurological severity score, and lesion size.

Results

Ro5-4864 resulted in a profound decrease in ICP that correlated with improved cerebral metabolism characterized by significantly higher glucose and pyruvate and lower lactate concentrations in the pericontusional area in comparison with vehicle-treated animals. Reduced ICP correlated with reduced water content in the injured tissue; improved metabolism was associated with reduced mitochondrial damage evidenced by electron microscopy. Both effects were associated with a profound and significant reduction in glycerol release and lesion size, and correlated with improved neurological recovery.

Conclusions

The present study shows that Ro5-4864 has a favorable effect on the fate of injured brain, presumably mediated by improvement of metabolism. It further suggests that improvement of metabolism may contribute to ICP relief.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. Jaggi JL, Obrist WD, Gennarelli TA, Langfitt TW. Relationship of early cerebral blood flow and metabolism to outcome in acute head injury. J Neurosurg. 1990;72:176–82.

    Article  PubMed  CAS  Google Scholar 

  2. Obrist WD, Langfitt TW, Jaggi JL, Cruz J, Gennarelli TA. Relationship to intracranial hypertension. J Neurosurg. 1984;61:241–53.

    Article  PubMed  CAS  Google Scholar 

  3. Bouma GJ, Muizelaar JP, Bandoh K, Marmarou A. Blood pressure and intracranial pressure-volume dynamics in severe head injury: relationship with cerebral blood flow. J Neurosurg. 1992;77:15–9.

    Article  PubMed  CAS  Google Scholar 

  4. Chieregato A, Tanfani A, Compagnone C, Turrini C, Sarpieri F, Ravaldini M, et al. Global cerebral blood flow and CPP after severe head injury: a xenon-CT study. Intensive Care Med. 2007;33:856–62.

    Article  PubMed  Google Scholar 

  5. Soustiel JF, Sviri GE. Monitoring of cerebral metabolism: non-ischemic impairment of oxidative metabolism following severe traumatic brain injury. Neurol Res. 2007;29:654–60.

    Article  PubMed  CAS  Google Scholar 

  6. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–74.

    Article  PubMed  CAS  Google Scholar 

  7. Soustiel JF, Mahamid E, Chistyakov A, Shik V, Benenson R, Zaaroor M. Comparison of moderate hyperventilation and mannitol for control of intracranial pressure control in patients with severe traumatic brain injury—a study of cerebral blood flow and metabolism. Acta Neurochir (Wien). 2006;148:845–51.

    Article  CAS  Google Scholar 

  8. Soustiel JF, Sviri GE, Mahamid E, Shik V, Abeshaus S, Zaaroor M. Cerebral blood flow and metabolism following decompressive craniectomy for control of increased intracranial pressure. Neurosurgery. 2010;67:65–72. discussion 72.

    Article  PubMed  Google Scholar 

  9. Merenda A, Bullock R. Clinical treatments for mitochondrial dysfunctions after brain injury. Curr Opin Crit Care. 2006;12:90–6.

    Article  PubMed  Google Scholar 

  10. Robertson CL, Soane L, Siegel ZT, Fiskum G. The potential role of mitochondria in pediatric traumatic brain injury. Dev Neurosci. 2006;28:432–46.

    Article  PubMed  CAS  Google Scholar 

  11. Xiong Y, Gu Q, Peterson PL, Muizelaar JP, Lee CP. Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J Neurotrauma. 1997;14:23–34.

    Article  PubMed  CAS  Google Scholar 

  12. Galluzzi L, Blomgren K, Kroemer G. Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci. 2009;10:481–94.

    Article  PubMed  CAS  Google Scholar 

  13. Mazzeo AT, Beat A, Singh A, Bullock MR. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI. Exp Neurol. 2009;218:363–70.

    Article  PubMed  CAS  Google Scholar 

  14. Soustiel JF, Larisch S. Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics. 2010;7:13–21.

    Article  PubMed  CAS  Google Scholar 

  15. Braestrup C, Squires RF. Specific benzodiazepine receptors in rat brain characterized by high-affinity (3H)diazepam binding. Proc Natl Acad Sci USA. 1977;74:3805–9.

    Article  PubMed  CAS  Google Scholar 

  16. McEnery MW, Snowman AM, Trifiletti RR, Snyder SH. Isolation of the mitochondrial benzodiazepine receptor: association with the voltage-dependent anion channel and the adenine nucleotide carrier. Proc Natl Acad Sci USA. 1992;89:3170–4.

    Article  PubMed  CAS  Google Scholar 

  17. Decaudin D. Peripheral benzodiazepine receptor and its clinical targeting. Anticancer Drugs. 2004;15:737–45.

    Article  PubMed  CAS  Google Scholar 

  18. Soustiel JF, Zaaroor M, Vlodavsky E, Veenman L, Weizman A, Gavish M. Neuroprotective effect of Ro5-4864 following brain injury. Exp Neurol. 2008;214:201–8.

    Article  PubMed  CAS  Google Scholar 

  19. Palzur E, Vlodavsky E, Mulla H, Arieli R, Feinsod M, Soustiel JF. Hyperbaric oxygen therapy for reduction of secondary brain damage in head injury: an animal model of brain contusion. J Neurotrauma. 2004;21:41–8.

    Article  PubMed  Google Scholar 

  20. Soustiel JF, Palzur E, Vlodavsky E, Veenman L, Gavish M. The effect of oxygenation level on cerebral post-traumatic apoptotsis is modulated by the 18-kDa translocator protein (also known as peripheral-type benzodiazepine receptor) in a rat model of cortical contusion. Neuropathol Appl Neurobiol. 2008;34:412–23.

    Article  PubMed  CAS  Google Scholar 

  21. Vlodavsky E, Palzur E, Soustiel JF. Hyperbaric oxygen therapy reduces neuroinflammation and expression of matrix metalloproteinase-9 in the rat model of traumatic brain injury. Neuropathol Appl Neurobiol. 2006;32:40–50.

    Article  PubMed  CAS  Google Scholar 

  22. Lees GJ. Effects of anaesthetics, anticonvulsants and glutamate antagonists on kainic acid-induced local and distal neuronal loss. J Neurol Sci. 1992;108:221–8.

    Article  PubMed  CAS  Google Scholar 

  23. Nakamoto Y, Watabe S, Shiotani T, Yoshii M. Peripheral-type benzodiazepine receptors in association with epileptic seizures in EL mice. Brain Res. 1996;717:91–8.

    Article  PubMed  CAS  Google Scholar 

  24. Shiotani T, Nakamoto Y, Watabe S, Yoshii M, Nabeshima T. Anticonvulsant actions of nefiracetam on epileptic EL mice and their relation to peripheral-type benzodiazepine receptors. Brain Res. 2000;859:255–61.

    Article  PubMed  CAS  Google Scholar 

  25. Soustiel JF, Glenn TC, Shik V, Boscardin J, Mahamid E, Zaaroor M. Monitoring of cerebral blood flow and metabolism in traumatic brain injury. J Neurotrauma. 2005;22:955–65.

    Article  PubMed  Google Scholar 

  26. Shohami E, Novikov M, Bass R. Long-term effect of HU-211, a novel non-competitive NMDA antagonist, on motor and memory functions after closed head injury in the rat. Brain Res. 1995;674:55–62.

    Article  PubMed  CAS  Google Scholar 

  27. Prins ML, Fujima LS, Hovda DA. Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res. 2005;82:413–20.

    Article  PubMed  CAS  Google Scholar 

  28. Lifshitz J, Friberg H, Neumar RW, Raghupathi R, Welsh FA, Janmey P, et al. Structural and functional damage sustained by mitochondria after traumatic brain injury in the rat: evidence for differentially sensitive populations in the cortex and hippocampus. J Cereb Blood Flow Metab. 2003;23:219–31.

    Article  PubMed  CAS  Google Scholar 

  29. Johnston AJ, Steiner LA, Coles JP, Chatfield DA, Fryer TD, Smielewski P, et al. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med. 2005;33:189–95. discussion 255–187.

    Article  PubMed  Google Scholar 

  30. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien). 2008;150:461–9. discussion 470.

    Article  CAS  Google Scholar 

  31. Enblad P, Valtysson J, Andersson J, Lilja A, Valind S, Antoni G, et al. Simultaneous intracerebral microdialysis and positron emission tomography in the detection of ischemia in patients with subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1996;16:637–44.

    Article  PubMed  CAS  Google Scholar 

  32. Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12:112–8.

    Article  PubMed  Google Scholar 

  33. Hlatky R, Valadka AB, Goodman JC, Robertson CS. Evolution of brain tissue injury after evacuation of acute traumatic subdural hematomas. Neurosurgery. 2004;55:1318–23. discussion 1324.

    Article  PubMed  Google Scholar 

  34. Langemann H, Mendelowitsch A, Landolt H, Alessandri B, Gratzl O. Experimental and clinical monitoring of glucose by microdialysis. Clin Neurol Neurosurg. 1995;97:149–55.

    Article  PubMed  CAS  Google Scholar 

  35. Valtysson J, Persson L, Hillered L. Extracellular ischaemia markers in repeated global ischaemia and secondary hypoxaemia monitored by microdialysis in rat brain. Acta Neurochir (Wien). 1998;140:387–95.

    Article  CAS  Google Scholar 

  36. Bazan Jr NG, Rakowski H. Increased levels of brain free fatty acids after electroconvulsive shock. Life Sci. 1970;9:501–7.

    Article  PubMed  CAS  Google Scholar 

  37. Gercken G, Brauning C. Quantitative determination of hydrolysis products of phospholipids in the ischaemic rat brain. Pflugers Arch. 1973;344:207–15.

    Article  PubMed  CAS  Google Scholar 

  38. Chan PH, Longar S, Fishman RA. Phospholipid degradation and edema development in cold-injured rat brain. Brain Res. 1983;277:329–37.

    Article  PubMed  CAS  Google Scholar 

  39. Veiga S, Azcoitia I, Garcia-Segura LM. Ro5-4864, a peripheral benzodiazepine receptor ligand, reduces reactive gliosis and protects hippocampal hilar neurons from kainic acid excitotoxicity. J Neurosci Res. 2005;80:129–37.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean F. Soustiel.

Additional information

Eugene Vlodavsky made an equal contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soustiel, J.F., Vlodavsky, E., Milman, F. et al. Improvement of Cerebral Metabolism Mediated by Ro5-4864 is Associated with Relief of Intracranial Pressure and Mitochondrial Protective Effect in Experimental Brain Injury. Pharm Res 28, 2945–2953 (2011). https://doi.org/10.1007/s11095-011-0463-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0463-0

KEY WORDS

Navigation