Skip to main content

Advertisement

Log in

An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India

  • Published:
Environment, Development and Sustainability Aims and scope Submit manuscript

Abstract

The present research work accentuates the hydrogeological evaluation for Devdari watershed of Maharashtra, Central India, using remote sensing, GIS, and multi influencing factor (MIF). The thematic layers of land use/land cover, groundwater depth, slope, drainage, flow direction, flow accumulation and geomorphology were prepared using IRS-LISS-III satellite data coupled with Shuttle Radar Topography Mission data on 23.50 and 30 m spatial resolution, respectively. The raster layers of these themes were estimated by employing ArcGIS software 10.3 and multi-influencing factor method and subsequently assigned with the relative weights as per their groundwater potential characteristics. For acknowledgement of the groundwater potential map, all the thematic layers and their respective weightage values were subjected to weighted overlay analysis (WOA) method. The evolved map demonstrates six groundwater potential zones in the study area, i.e., poor to nil (0.27 km2), very poor (0.95 km2), poor (17.67 km2), moderate (0.33 km2), good (9.51 km2), very good (14.665 km2) and excellent (1.84 km2). A field check survey was carried out to ascertain the validity of groundwater potential maps. The results of study area disclose that the area of watershed with poor, moderate and good-to-excellent groundwater potential zones is evaluated to allow precipitated water to infiltrate into subsurface and finally contribute to groundwater recharge in the watershed area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Bear, J., & Verruijt, A. (1987). Theory and application of transport in porous media. Dordrecht: D. Reidel Publishing.

    Google Scholar 

  • Biswas, A., Jana, A., & Mandal, A. (2013). Application of remote sensing, GIS and MIF technique for elucidation of groundwater potential zones from a part of Orissa coastal tract, Eastern India. Research Journal of Recent Sciences,2(11), 42–49.

    Google Scholar 

  • Biswas, A. K., Tortajada, C., & Izquierdo, R. (Eds.). (2009). Water management in 2020 and beyond. Berlin: Springer.

    Google Scholar 

  • Choudhari, P. P, Nigam, G. K., Singh, S. K., & Thakur, S. (2018). Morphometric based prioritization of watershed for groundwater potential of Mula river basin, Maharashtra, India. Geology, Ecology, and Landscapes, 2(4), 256–267.

    Google Scholar 

  • Fredrick, K. C., Becker, M. W., Shawn Matott, L., Daw, A., Bandilla, K., & Flewelling, D. M. (2007). Development of a numerical groundwater flow model using SRTM elevations. Hydrogeology Journal,15, 171–181.

    CAS  Google Scholar 

  • Ghosh, P. K., Bandyopadhyay, S., Jana, J. C. (2016). Mapping of groundwater potential zones in hard rock terrain using geoinformatics: a case of Kumari watershed in western part of West Bengal. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-015-0044-z

  • Gnanachandrasamy, G., Zhou, Y., Bagyaraj, M., Venkatramanan, S., Ramkumar, T., & Wang, S. (2018). Remote sensing and GIS based groundwater potential zone mapping in Ariyalur District, Tamil Nadu. Journal of the Geological Society of India, 92(4), 484–490.

    Google Scholar 

  • Gogu, R., Carabin, G., Hallet, V., Peters, V., & Dassargues, A. (2001). GIS-based hydrogeological databases and groundwater modelling. Hydrogeology Journal, 9(6), 555–569.

    Google Scholar 

  • Golla, V., Etikala, B., Veeranjaneyulu, A., Subbarao, M., Surekha, A., & Narasimhlu, K. (2018). Data sets on delineation of groundwater potential zones identified by geospatial tool in Gudur area, Nellore district, Andhra Pradesh, India. Data in Brief, 20, 1984–1991.

    Google Scholar 

  • Ibrahim-Bathis, K., & Ahmed, S. A. (2016). Geospatial technology for delineating groundwater potential zones in Doddahalla watershed of Chitradurga district, Egypt. India: Journal Remote Sensing Space Science. https://doi.org/10.1016/jejrs.2016.06.002.

    Book  Google Scholar 

  • Jaiswal, R. K., Mukherjee, S., Krishnamurthy, J., & Saxena, R. (2010). Role of remote sensing and GIS techniques for generation of groundwater prospect zones towards rural development—an approach. International Journal of Remote Sensing, 24(5), 993–1008.

    Google Scholar 

  • Jha, M. K., Chowdary, V. M., & Chowdhury, A. (2010). Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeology Journal, 18(7), 1713–1728. https://doi.org/10.1007/s10040-010-0631-z.

  • Kale, V. S., & Kulkarni, H. (1993). IRS-1A and landsat data in mapping deccan trap flows around Pune, India: Implications on hydro-geological modelling. The International Archives of the Photogrammetry, Remote Sensing,29, 429–435.

    Google Scholar 

  • Khadri, S. F. R., & Pande, C. (2016). Ground water flow modeling for calibrating steady state using MODFLOW software—A case study of Mahesh River Basin, India. Modeling Earth Systems and Environment Springer Journal,2(1), 2–17.

    Google Scholar 

  • Konkul, J., Rojborwornwittaya, W., & Srilert, C. (2014). Hydrogeologic characteristics and groundwater potentiality mapping using potential surface analysis in the HuaySai area, Phetchaburi province. Thailand Geosciences Journal,18(1), 89–103.

    CAS  Google Scholar 

  • Krishnamurthy, J., Venkatesa Kumar, N., Jayaraman, V., Manivel, M. (2007). An approach to demarcate ground water potential zones through remote sensing and a geographical information system. International Journal of Remote Sensing, 17(10), 1867–1884.

    Google Scholar 

  • Kulkarni, H., Deolankar, S. B., Lalwani, A., Joseph, B., & Pawar, S. (2000). Hydrogeological framework of the Deccan basalt groundwater systems, west-central India. Hydrogeological Journal,8, 368–378.

    Google Scholar 

  • Kumar, N., Singh, S. K., & Pandey, H. K. (2018b). Drainage morphometric analysis using open access earth observation datasets in a drought-affected part of Bundelkhand, India. Applied Geomatics, 10(3), 173–189.

    Google Scholar 

  • Kumar, N., Singh, S. K., Singh, V. G., & Dzwairo, Bloodless. (2018a). Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh. India. Modeling Earth Systems and Environment, 4(1), 295–310.

    Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers,3(2), 189–196.

    Google Scholar 

  • Moharir, K., Pande, C., & Patil, S. (2017). Inverse modeling of Aquifer parameters in basaltic rock with the help of pumping test method using MODFLOW software. Geoscience Frontiers,8, 1385–1395.

    Google Scholar 

  • Mukherjee, S., Sashtri, S., Gupta, M., Pant, M. K., Singh, C. K., Singh, S. K., et al. (2007). Integrated water resource management using remote sensing and geophysical techniques: Aravali quartzite, Delhi, India. Journal of Environmental Hydrology, 15, 1–10.

    Google Scholar 

  • Muralitharan, J., & Palanivel, K. (2015). Groundwater targeting using remote sensing, geographical information system and analytical hierarchy process method in hard rock aquifer system, Karur district, Tamil Nadu, India. Earth Science Informatics, 8(4), 827–842.

    Google Scholar 

  • Murmu, P., Kumar, M., Lal, D., Sonker, I., & Singh, S. K. (2019). Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2019.100239.

  • Neshat, A., Pradhan, B., Pirasteh, S., & Shafri, H. Z. M. (2013). Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environmental Earth Science,71, 1–13.

    Google Scholar 

  • Pande, C., & Moharir, K. N. (2014). Analysis of land use/land cover changes using remote sensing data and GIS techniques of Patur Taluka, Maharashtra, India. IJPRET,2(12), 85–92.

    Google Scholar 

  • Pande, C. B., & Moharir, K. (2015). GIS-based quantitative morphometric analysis and its consequences: A case study from Shanur River Basin, Maharashtra India. Applied Water Science,7(2), 861–871.

    Google Scholar 

  • Pande, C. B., Moharir, K. N., & Pande, R. (2018). Assessment of morphometric and hypsometric study for watershed development using spatial technology—A case study of Wardha river basin in the Maharashtra, India. International Journal of River Basin Management,4(4), 1–36.

    Google Scholar 

  • Pradhan, R. K., Srivastava, P. K., Maurya, S., Singh, S. K., & Patel, D. P. (2018). Integrated framework for soil and water conservation in Kosi River Basin. Geocarto International, 1–20.

  • Rahman, H. A. (2001). Evaluation of groundwater resources in lower cretaceous aquifer system in Sinai. Water Resource Management,15, 187–202.

    Google Scholar 

  • Rawat, K. S., Singh, S. K., Singh, M. I., & Garg, B. L. (2019). Comparative evaluation of vertical accuracy of elevated points with ground control points from ASTERDEM and SRTMDEM with respect to CARTOSAT-1DEM. Remote Sensing Applications: Society and Environment, 13, 289–297.

    Google Scholar 

  • Sener, E., Davraz, A., & Ozcelik, M. (2005). An integration of GIS and remote sensing in groundwater investigations: A case study in Burdur, Turkey. Hydrogeology Journal, 13(5–6), 826–834.

    Google Scholar 

  • Shaban, A., Khawlie, M., & Abdallah, C. (2006). Use of remote sensing and GIS to determine recharge potential zone: The case of Occidental Lebanon. Hydrogeology Journal,14(4), 433–443.

    Google Scholar 

  • Singh, L. K., Jha, M.K., & Chowdary, V. M. (2017). Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. Journal of Cleaner Production,142, 1436–1456.

    Google Scholar 

  • Singh, P., & Singh, S. K. (2015). Investigation of groundwater condition using Geoelectrical Resistivity Technique: A case study of Naveda Block. Kaushambi, Bull Environ Sci Res., 4, 18–24.

    Google Scholar 

  • Singh, S., Singh, C., Kumar, K., Gupta, R., & Mukherjee, S. (2009). Spatial-temporal monitoring of groundwater using multivariate statistical techniques in Bareilly district of Uttar Pradesh, India. Journal of Hydrology and Hydromechanics, 57, 45–54. https://doi.org/10.2478/v10098-009-0005-1.

  • Singh, S. K., Mustak, S. K., Srivastava, P. K., Szabó, S., & Islam, T. (2015a). Predicting spatial and decadal LULC changes through cellular automata markov chain models using earth observation datasets and geo-information. Environmental Processes, 2(1), 61–78.

    Google Scholar 

  • Singh, S. K., Singh, C. K., & Mukherjee, S. (2010). Impact of land‐use and land‐cover change on groundwater quality in the Lower Shiwalik hills: a remote sensing and GIS based approach. Central European Journal of Geosciences, 2, 124–131. https://doi.org/10.2478/v10085-010-0003-x.

  • Singh, S. K., Srivastava, P. K., Gupta, M., & Mukherjee, S. (2012). Modeling mineral phase change chemistry of groundwater in a rural-urban fringe. Water Science and Technology, 66(7), 1502–1510.

    CAS  Google Scholar 

  • Singh, S. K., Srivastava, P. K., Gupta, M., Thakur, J. K., & Mukherjee, S. (2014). Appraisal of land use/land cover of mangrove forest ecosystem using support vector machine. Environmental Earth Sciences, 71(5), 2245–2255.

    Google Scholar 

  • Singh, S. K., Srivastava, P. K., Pandey, A. C., & Gautam, S. K. (2013). Integrated assessment of groundwater influenced by a confluence river system: Concurrence with remote sensing and geochemical modelling. Water Resources Management, 27(12), 4291–4313.

    Google Scholar 

  • Singh, S. K., Srivastava, P. K., Singh, D., Han, D., Gautam, S. K., & Pandey, A. C. (2015b). Modeling groundwater quality over a humid subtropical region using numerical indices, earth observation datasets, and X-ray diffraction technique: a case study of Allahabad district. India. Environmental Geochemistry and Health, 37(1), 157–180.

    CAS  Google Scholar 

  • Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union,38, 913–920.

    Google Scholar 

  • Szabó, G., Singh, S. K., & Szabó, S. (2015). Slope angle and aspect as influencing factors on the accuracy of the SRTM and the ASTER GDEM databases. Physics and Chemistry of the Earth, Parts A/B/C, 83–84, 137–145.

    Google Scholar 

  • Thomas, R., & Duraisamy, V. (2016). Hydro-geological delineation of groundwater vulnerability to droughts in semi-arid areas of Western Ahmednagar district. The Egyptian Journal of Remote Sensing and Space Sciences,142, 1436–1456.

    Google Scholar 

  • Yadav, S. K., Dubey, A., Szilard, S., & Singh, S. K. (2017). Prioritisation of sub-watersheds based on earth observation data of agricultural dominated northern river basin of India. Geocarto International, 33(4), 339–356.

    Google Scholar 

  • Yadav, S. K, Singh, S. K, Gupta, M., & Srivastava, P. K. (2014). Morphometric analysis of Upper Tons basin from Northern Foreland of Peninsular India using CARTOSAT satellite and GIS. Geocarto International, 29(8), 895–914.

    Google Scholar 

  • Tweed, S. O., Leblanc, M., Webb, J. A., & Lubczynski, M. W. (2007). Remote sensing and GIS for mapping groundwater recharge and discharge areas in salinity prone catchments, southeastern Australia. Hydrogeology Journal, 15(1), 75–96.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaitanya B. Pande.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pande, C.B., Moharir, K.N., Singh, S.K. et al. An integrated approach to delineate the groundwater potential zones in Devdari watershed area of Akola district, Maharashtra, Central India. Environ Dev Sustain 22, 4867–4887 (2020). https://doi.org/10.1007/s10668-019-00409-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10668-019-00409-1

Keywords

Navigation