Skip to main content

Advertisement

Log in

Human highly modified landscapes restrict gene flow of the largest neotropical canid, the maned wolf

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

A Correction to this article was published on 19 October 2022

This article has been updated

Abstract

Human-modified landscapes have been threatening mammal populations worldwide. However, little is known about the genetic consequences of these impacts in long term for most species. Here, we analyzed the genetic diversity and population structuring of a top predator, the maned wolf (Chrysocyon brachyurus), to investigate genetic signatures that could be explained by anthropogenic threats. We collected non-invasive samples from scats, tissue from road-killed and blood from captured animals, which were analyzed by a set of nine microsatellite loci. We assessed the genetic population structure of 105 individuals using Bayesian and discriminant factorial components. Additionally, we measured the genetic diversity and gene flow, and evaluated bottleneck signatures. Genetic analyses revealed a spatial population structuring between central-western and southeastern populations, that is likely due to the reduction of gene flow. Both central-western and southeastern populations showed similar genetic diversity values and signatures of a recent bottleneck. It is suggested that maned wolf population structuring observed is a consequence of the huge human landscape modification, for agribusiness purposes occurring during the past century. It is inferred that both gene flow reduction and recent bottlenecks may compromise the genetic variation maintenance within local populations and negatively affect the long-term persistence of this wild and unique canid. Our results may be useful for defining international conservation actions considering landscape and population conectivity of this charismatic though Near Threatened to extinction Neotropical species, and helpful for the National Action Plan for Brazilian Canids Conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and material

Data will be available in a public repository, such us Dryad.

Code Availability

Not applicable.

Change history

References

  • Anderson CR Jr, Lindzey FG, McDonald DB (2004) Genetic structure of cougar populations across the Wyoming Basin: metapopulation or megapopulation. J Mammal 85:1207–1214

    Article  Google Scholar 

  • Ascensão F, Desbiez ALJ, Medici EP, Bager A (2017) Spatial patterns of road mortality of medium–large mammals. in Mato Grosso do Sul, Brazil

    Google Scholar 

  • Azevedo FC (2008) Área de vida e organização espacial de Lobos-Guará (Chrysocyon brachyurus) na região do Parque Nacional da Serra da Canastra, Minas Gerais, Brasil. Universidade Federal de Minas Gerais

  • Baudouin L, Lebrun P (2001) An operational Bayesian approach for the identification of sexually reproduced cross fertilized populations using molecular markers. In: Doré, Dosba, Baril (eds) International Symposium on Molecular Markers for Characterizing Genotypes and Identifying Cultivars in Horticulture 546. pp 81–93

  • Bellemain E, Taberlet P (2004) Improved noninvasive genotyping method: application to brown bear (Ursus arctos) faeces. Mol Ecol Notes 4:519–522. doi: https://doi.org/10.1111/j.1471-8286.2004.00711.x

    Article  CAS  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency.Ann Stat1165–1188

  • Bickley SM, Lemos FG, Gilmore MP et al (2020) Human perceptions of and interactions with wild canids on cattle ranches in central Brazil. Oryx 54:546–553

    Article  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Sci (80-) 328:1164–1168

    Article  CAS  Google Scholar 

  • Ceia-Hasse A, Borda‐de‐Água L, Grilo C, Pereira HM (2017) Global exposure of carnivores to roads. Glob Ecol Biogeogr 26:592–600

    Article  Google Scholar 

  • Chame M (2003) Terrestrial mammal feces: a morphometric summary and description. Mem Inst Oswaldo Cruz 98:71–94

    Article  PubMed  Google Scholar 

  • Chaves PB, GraefF VG, Lion MB et al (2012) DNA barcoding meets molecular scatology: short mtDNA sequences for standardized species assignment of carnivore noninvasive samples. Mol Ecol Resour 12:18–35

    Article  CAS  PubMed  Google Scholar 

  • Ciocheti G, Assis JC, Ribeiro JW, Ribeiro MC (2017) Highway widening and underpass effects on vertebrate road mortality

  • Coelho L, Romero D, Queirolo D, Guerrero JC (2018) Understanding factors affecting the distribution of the maned wolf (Chrysocyon brachyurus) in South America: Spatial dynamics and environmental drivers. Mamm Biol 92:54–61. doi: https://doi.org/10.1016/j.mambio.2018.04.006

    Article  Google Scholar 

  • De Mattos PSR, Del Lama MA, Toppa RH, Arno Rudi Schwantes AR (2004) Populational genetic structure of free-living maned wolves (Chrysocyon brachyurus) determined by proteic markers. Brazilian J Biol 64:639–644

    Article  Google Scholar 

  • DeCandia AL, Henger CS, Krause A et al (2019) Genetics of urban colonization: neutral and adaptive variation in coyotes (Canis latrans) inhabiting the New York metropolitan area. J Urban Ecol 5(1):1–12. doi: https://doi.org/10.1093/jue/juz002

  • DER-SP (2019) MALHA RODOVIÁRIA DO ESTADO DE SÃO PAULO. In: Gov. do Estado São Paulo

  • Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci 91:3166–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Dib LV, Palmer PJS, Class C, de SC et al (2020) Non-invasive sampling in Itatiaia National Park, Brazil : wild mammal parasite detection. BMC Vet Res 16:1–21. doi: https://doi.org/10.1186/s12917-020-02490-5

    Article  CAS  Google Scholar 

  • Dietz JM (1984) Ecology and social organization of the maned wolf (Chrysocyon brachyurus)

  • Do C, Waples RS, Peel D et al (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Dutta T, Sharma S, Maldonado JE et al (2013) Fine-scale population genetic structure in a wide‐ranging carnivore, the leopard (Panthera pardus fusca) in central India. Divers Distrib 19:760–771

    Article  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: https://doi.org/10.1007/s12686-011-9548-7

    Article  Google Scholar 

  • Emmons LH (2012) The maned wolves of Noel Kempff Mercado National Park. Smithsonian Institution Scholarly Press, Washington, D.C.

    Book  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis

  • Fontoura-Rodrigues ML (2008) Diversidade genética e estrutura populacional do Lobo-Guará (Chrysocyon brachyurus). Pontifícia Universidade Católica do Rio Grande do Sul, Brasil

    Google Scholar 

  • Fontoura-Rodrigues ML, Eizirik E (2014) Evolutionary and conservation genetics of the maned wolf. Consorte-McCrea AC, Ferraz Santos E, Ed Ecol Conserv maned wolf Multidiscip Perspect CRC Press Taylor Fr Gr 77–85

  • Fontoura-Rodrigues ML, Lima‐Rosa CAV, Tchaicka L et al (2008) Cross‐amplification and characterization of 13 tetranucleotide microsatellites in multiple species of Neotropical canids. Mol Ecol Resour 8:898–900

  • Francisco LV, Langsten AA, Mellersh CS et al (1996) A class of highly polymorphic tetranucleotide repeats for canine genetic mapping. Mamm Genome 7:359–362

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (2010) Challenges and opportunities of genetic approaches to biological conservation. Biol Conserv 143:1919–1927

    Article  Google Scholar 

  • Frankham R, Briscoe DA, Ballou JD (2002) Introduction to conservation genetics. Cambridge University Press

  • Franklin IR (1980) Evolutionary change in small populations. Sinauer Associates, USA, Sunderland, Massachusetts

    Google Scholar 

  • Garner A, Rachlow JL, Hicks JF (2005) Patterns of genetic diversity and its loss in mammalian populations. Conserv Biol 19:1215–1221

    Article  Google Scholar 

  • Girman DJ, Vila C, Geffen E et al (2001) Patterns of population subdivision, gene flow and genetic variability in the African wild dog (Lycaon pictus). Mol Ecol 10:1703–1723

    Article  CAS  PubMed  Google Scholar 

  • GOINFRA (2019) Mapa Rodoviario Estadual]

  • González S, Cosse M, del Rosario Franco M et al (2015) Population structure of mtDNA variation due to Pleistocene fluctuations in the South American maned wolf (Chrysocyon brachyurus, Illiger, 1815): management units for conservation. J Hered 106:459–468

    Article  PubMed  Google Scholar 

  • Gottelli D, Sillero-Zubiri C, Applebaum GD et al (1994) Molecular genetics of the most endangered canid: the Ethiopian wolf Canis simensis. Mol Ecol 3:301–312

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http://www.unil.ch/izea/softwares/fstat.html. Updated from Goudet (1995)

  • Greenbaum G, Templeton AR, Zarmi Y, Bar-David S (2014) Allelic richness following population founding events–A Stochastic modeling framework incorporating gene flow and genetic drift. PLoS ONE 9:e115203

    Article  PubMed  PubMed Central  Google Scholar 

  • Grilo C, Coimbra MR, Cerqueira RC et al (2019) Brazil Road-Kill: A Dataset of Wildlife Terrestrial Vertebrate Road‐Kills. Bull Ecol Soc Am 100:e01449

    Article  Google Scholar 

  • Guillot G, Estoup A, Mortier F, Cosson JF (2005) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haag T, Santos AS, De Angelo C et al (2009) Development and testing of an optimized method for DNA-based identification of jaguar (Panthera onca) and puma (Puma concolor) faecal samples for use in ecological and genetic studies. Genetica 136:505–512

    Article  CAS  PubMed  Google Scholar 

  • Haag T, Santos AS, Sana DA et al (2010) The effect of habitat fragmentation on the genetic structure of a top predator: loss of diversity and high differentiation among remnant populations of Atlantic Forest jaguars (Panthera onca). Mol Ecol 19:4906–4921

    Article  CAS  PubMed  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052. doi: https://doi.org/10.1126/sciadv.1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Huck M, Jędrzejewski W, Borowik T et al (2010) Habitat suitability, corridors and dispersal barriers for large carnivores in Poland. Acta Theriol (Warsz) 55:177–192

    Article  Google Scholar 

  • ICMBio (Instituto Chico Mendes de Conservação da Biodiversidade) (2014) Unidades de conservação. In: Brasília: ICMBio. http://www.icmbio.gov.br/portal/biodiversidade/unidades-de-conservacao/biomas-brasileiros.html

  • Jácomo de AAT, Kashivakura CK, Ferro C et al (2009) Home range and spatial organization of maned wolves in the Brazilian grasslands. J Mammal 90:150–157

    Article  Google Scholar 

  • Jombart T (2008) adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11:94

    Article  PubMed  PubMed Central  Google Scholar 

  • Jost LOU (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Jueterbock A, Kraemer P, Gerlach G et al (2012) Package ‘DEMEtics’. Mol Ecol 19:3845–3852

    Google Scholar 

  • Kalinowski ST (2005) hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Resour 5:187–189

    Article  CAS  Google Scholar 

  • Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106

    Article  PubMed  Google Scholar 

  • Kearse M, Moir R, Wilson A et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    Article  PubMed  PubMed Central  Google Scholar 

  • Klink CA, Machado RB (2005) Conservation of the Brazilian cerrado. Conserv Biol 19:707–713

    Article  Google Scholar 

  • Kohn MH, Wayne RK (1997) Facts from feces revisited. Trends Ecol Evol 12:223–227

    Article  CAS  PubMed  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M et al (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotviski BM, Facure KG, de Azevedo FC et al (2019) Trophic niche overlap and resource partitioning among wild canids in an anthropized Neotropical ecotone 26(2):368–376

  • Lande R (1995) Mutation and conservation. Conserv Biol 9:782–791

    Article  Google Scholar 

  • Lemos FG (2016) Ecologia e conservação da raposa-do-campo (Lycalopex vetulus) e interações com canídeos simpátricos em áreas antropizadas do Brasil central. Universidade Federal de Uberlândia, Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais

  • Li Y, Korol AB, Fahima T et al (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  CAS  PubMed  Google Scholar 

  • Lion MB (2007) Diversidade genética e conservação de Lobo-Guará Chrysocyon brachyurus. em áreas protegidas do Distrito Federal

  • Lion MB, Eizirik E, Garda AA et al (2011) Conservation genetics of maned wolves in a highly impacted area of the Brazilian Cerrado biome. Genetica 139:369–381

    Article  PubMed  Google Scholar 

  • Lorenzana G, Heidtmann L, Haag T et al (2020) Large-scale assessment of genetic diversity and population connectivity of Amazonian jaguars (Panthera onca) provides a baseline for their conservation and monitoring in fragmented landscapes. Biol Conserv 242:108417

    Article  Google Scholar 

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197

    Article  Google Scholar 

  • Mannise N, Cosse M, González S et al (2017) Maned wolves retain moderate levels of genetic diversity and gene flow despite drastic habitat fragmentation. Endanger Species Res 34:449–462

    Article  Google Scholar 

  • Mannise N, Trovati RG, Duarte JMB et al (2018) Using non–invasive genetic techniques to assist in maned wolf conservation in a remnant fragment of the Brazilian Cerrado: Brief communication. Anim Biodivers Conserv 41:315–319

    Article  Google Scholar 

  • MapBiomas (2020) Projeto MapBiomas – Coleção 5.0 da Série Anual de Mapas de Cobertura e Uso de Solo do Brasil. http://mapbiomas.org

  • Marshall TC, Slate J, Kruuk LE, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639

    Article  CAS  PubMed  Google Scholar 

  • McManus JS, Dalton DL, Kotzé A et al (2015) Gene flow and population structure of a solitary top carnivore in a human-dominated landscape. Ecol Evol 5:335–344

    Article  PubMed  Google Scholar 

  • Mills LS, Allendorf FW (1996) The one-migrant‐per‐generation rule in conservation and management. Conserv Biol 10:1509–1518

    Article  Google Scholar 

  • Noss RF, Quigley HB, Hornocker MG et al (1996) Conservation Biology and Carnivore Conservation in the Rocky Mountains.Conserv Biol 949–963

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation‐based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • de Paula RC, Gambarini A (2013) Histórias de um lobo - Stories of a golden wolf. Editora Vinhedo, São Paulo

    Google Scholar 

  • de Paula RC, Rodrigues FHG, Queirolo RPSJ et al (2013) Avaliação do estado de conservação do Lobo-guará Chrysocyon brachyurus (Illiger, 1815) no Brasil. Biodiversidade Bras 3:146–159

    Google Scholar 

  • Paula RC, DeMatteo K (2015) Chrysocyon brachyurus (errata version published in 2016). In: IUCN Red List Threat. Species 2015 e.T4819A88135664. https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T4819A82316878.en. Downloaded on 11 June 2020

  • Peakall ROD, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: https://doi.org/10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M et al (2004) GeneClass2: A Software for Genetic Assignment and First-Generation Migrant Detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: A computer program for detecting recent reductions in the effective population size suing allele frequency data. J Hered 90:502–503. doi: https://doi.org/10.1093/jhered/90.4. 502

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queirolo D, Moreira JR, Soler L et al (2011) Historical and current range of the Near Threatened maned wolf Chrysocyon brachyurus in South America. Oryx 45:296–303

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rabinowitz A, Zeller KA (2010) A range-wide model of landscape connectivity and conservation for the jaguar, Panthera onca. Biol Conserv 143:939–945

    Article  Google Scholar 

  • Ramalho F do, Miotto P, Martins RA, Galetti N PM (2014) Maned wolf (Chrysocyon brachyurus) minimum population size and genetic diversity in a Cerrado protected area of southeastern Brazil revealed by fecal DNA analysis. Mammalia 78(4):465–472. doi: https://doi.org/10.1515/mammalia-2013-0109

  • Ramos VN, Lemos FG, Azevedo FC et al (2020) Wild carnivores, domestic dogs and ticks: shared parasitism in the Brazilian Cerrado. Parasitology 147:689–698

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reed DH, O’Grady JJ, Brook BW et al (2003) Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biol Conserv 113:23–34

    Article  Google Scholar 

  • dos Reis NR, Peracchi AL, Pedro WA, Lima IP (2011) Mamíferos do Brasil; Mammals of Brazil, Segunda. Universidade Estadual de Londrina

  • Ribeiro MC, Metzger JP, Martensen AC et al (2009) The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Riley SPD, Serieys LEK, Pollinger JP et al (2014) Individual behaviors dominate the dynamics of an urban mountain lion population isolated by roads. Curr Biol 24:1989–1994

    Article  CAS  PubMed  Google Scholar 

  • Ripple WJ, Estes JA, Beschta RL et al (2014) Status and ecological effects of the world’s largest carnivores. Sci (80-) 343:1241484. doi: https://doi.org/10.1126/science.1241484

    Article  CAS  Google Scholar 

  • Rodden M, Rodrigues F, Bestelmeyer S (2010) Chrysocyon brachyurus

  • Rodgers TW, Janečka JE (2013) Applications and techniques for non-invasive faecal genetics research in felid conservation. Eur J Wildl Res 59:1–16. doi: https://doi.org/10.1007/s10344-012-0675-6

    Article  Google Scholar 

  • Rodrigues T, Santos ALQ, Lima-Ribeiro A et al (2015) Occurrence of antibodies against Leptospira spp. in free-ranging wild canids from the Brazilian savanna. Pesqui Veterinária Bras 35:734–740

    Article  Google Scholar 

  • Rodríguez-Castro KG, Saranholi BH, Bataglia L et al (2018) Molecular species identification for scat samples of South American felids and canids. Conserv Genet Resour 12:61–66. doi: https://doi.org/10.1007/s12686-018-1048-6

    Article  Google Scholar 

  • Ruiz-Gonzalez A, Cushman SA, Madeira MJ et al (2015) Isolation by distance, resistance and/or clusters? Lessons learned from a forest‐dwelling carnivore inhabiting a heterogeneous landscape. Mol Ecol 24:5110–5129

    Article  PubMed  Google Scholar 

  • Salim DC, Akimoto AA, Carvalho CB et al (2007) Genetic variability in maned wolf based on heterologous short-tandem repeat markers from domestic dog. Genet Mol Res 6:348–357

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: A Laboratory Manual, 2a edn. Cold Spring Harbor Laboratory Press, New York

  • Saranholi B, Chávez-Congrains K, Galetti P (2017) Evidence of Recent Fine-Scale Population Structuring in South American Puma concolor. Diversity 9:44. doi: https://doi.org/10.3390/d9040044

    Article  Google Scholar 

  • Schmidt JH, Rattenbury KL, Robison HL et al (2017) Using non-invasive mark-resight and sign occupancy surveys to monitor low-density brown bear populations across large landscapes. Biol Conserv 207:47–54

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • SEINFRA (2018) Sistema Rodoviário do Estado de Mato Grosso do Sul

  • Sikes RS, Gannon WL (2011) Guidelines of the American Society of Mammalogists for the use of wild mammals in research. J Mammal 92:235–253

    Article  Google Scholar 

  • Singh SK, Aspi J, Kvist L et al (2017) Fine-scale population genetic structure of the Bengal tiger (Panthera tigris tigris) in a human-dominated western Terai Arc Landscape, India. PLoS ONE 12:e0174371

    Article  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1985) Gene flow in natural populations. Annu Rev Ecol Evol Syst 16:393–430

    Article  Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science(Washington) 236:787–792

    Article  CAS  Google Scholar 

  • Šnjegota D, Stefanović M, Veličković N et al (2018) Genetic characterization of grey wolves (Canis lupus L. 1758) from Bosnia and Herzegovina: implications for conservation. Conserv Genet 19:755–760

    Article  Google Scholar 

  • Sugg DW, Chesser RK, Dobson FS, Hoogland JL (1996) Population genetics meets behavioral ecology. Trends Ecol Evol 11:338–342

    Article  CAS  PubMed  Google Scholar 

  • Tchaicka L (2006) Abordagens filogenéticas, filogeográficas e populacionais em canídeos sul-americanos

  • Templenton AR (2006) Population genetics and microevolutionary theory. John Wiley & Sons., Inc., Publication., Hoboken, New Jersey

    Book  Google Scholar 

  • Tensen L, Groom RJ, Van Belkom J et al (2016) Genetic diversity and spatial genetic structure of African wild dogs (Lycaon pictus). Conserv Genet 17:785–794

    Article  Google Scholar 

  • Thapa K, Manandhar S, Bista M et al (2018) Assessment of genetic diversity, population structure, and gene flow of tigers (Panthera tigris tigris) across Nepal’s Terai Arc Landscape. PLoS ONE 13:e0193495

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, WILLS DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vucetich JA, Waite TA (2000) Is one migrant per generation sufficient for the genetic management of fluctuating populations? Anim Conserv 3:261–266

    Article  Google Scholar 

  • Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256

    Article  CAS  PubMed  Google Scholar 

  • Wang J (2004) Application of the one-migrant‐per‐generation rule to conservation and management. Conserv Biol 18:332–343

    Article  Google Scholar 

  • Waples RS, Do CHI (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed  Google Scholar 

  • Wilson EO (1988) The current state of biological diversity. Biodiversity 521:3–18

    Google Scholar 

  • Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected areas. Sci (80-) 280:2126–2128

    Article  CAS  Google Scholar 

  • Wright S (1949) The genetical structure of populations. Ann Hum Genet 15:323–354

    Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research is due to the SISBIOTA Top Predators network and the authors thank to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, 563299/2010-0) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, 2010/52315-7). KGRC thanks to CNPq (140689/2013-3) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES, Finance Code 001), and PMGJ thanks to CNPq (308385/2014-4; 303524/2019-7). We also thank IDEA WILD for financial support for DNA sequencing services. We are deeply grateful with all team from “Programa de Conservação Mamíferos do Cerrado/PCMC”, “Bandeiras e Rodovias” and “Tatu-Canastra – Pantanal”, and everyone who contributed providing samples. We also thank CENAP/ICMBio, Pró-Carnívoros Institute, Parque Ecológico de São Carlos (PESC) for sample collection; and the Protected Areas accessed (EEI, EEJ, PEV, EEC, FLONA-CB, AFA -Pirassununga) and Fazenda Rio Claro Duratex® for permission for sample collection. Authors also thank anonymous reviewers for their useful comments and suggestions on previous version of the manuscript.

Conflicts of interest/Competing interests

The authors declare no conflicts of interest (No copyright, financial or ethical issues).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodriguez-Castro Karen Giselle.

Ethics declarations

We declare that this work was approved by Ethic Committees and no ethical matter was misappropriated. This study followed the Brazilian environmental laws and were approved by the Ethic Committees on Animals Using (CEUA. Procedures with handling of wild maned wolves followed recommendations of the American Society of Mastozoology and were approved by the Brazilian governmental agency (Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio/SISBIO. Accessing the genetic resources was registered under SisGen license. All committees, agencies and process numbers are cited in the manuscript.

Consent to participate

All authors consented to participate in the research and the elaboration of the manuscript.

Consent for publication

All authors have approved the contents of the manuscript and agreed with its submission.

Additional information

Communicated by Karen E. Hodges.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karen Giselle, RC., Frederico Gemesio, L., Fernanda Cavalcanti, A. et al. Human highly modified landscapes restrict gene flow of the largest neotropical canid, the maned wolf. Biodivers Conserv 31, 1229–1247 (2022). https://doi.org/10.1007/s10531-022-02385-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-022-02385-x

Keywords

Navigation