Skip to main content
Log in

Flow-mediated dilation, nitroglycerin-mediated dilation and their ratio predict successful renal denervation in mild resistant hypertension

  • Letter to the Editors
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Cai A, Feng Y, Zhou Y (2017) A comprehensive review of an unmet public health issue: resistant hypertension. Clin Exp Hypertens 39:101–107. https://doi.org/10.1080/10641963.2016.1226892

    Article  PubMed  Google Scholar 

  2. Cecchi E, Parodi G, Fatucchi S et al (2016) Prevalence of thrombophilic disorders in takotsubo patients: the (ThROmbophylia in TAkotsubo cardiomyopathy) TROTA study. Clin Res Cardiol 105:717–726. https://doi.org/10.1007/s00392-016-0977-x

    Article  PubMed  CAS  Google Scholar 

  3. Vegter EL, Ovchinnikova ES, van Veldhuisen DJ et al (2017) Low circulating microRNA levels in heart failure patients are associated with atherosclerotic disease and cardiovascular-related rehospitalizations. Clin Res Cardiol 106:598–609. https://doi.org/10.1007/s00392-017-1096-z

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Völz S, Svedlund S, Andersson B et al (2017) Coronary flow reserve in patients with resistant hypertension. Clin Res Cardiol 106:151–157. https://doi.org/10.1007/s00392-016-1043-4

    Article  PubMed  Google Scholar 

  5. Bhatt DL, Kandzari DE, O’Neill WW et al (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370:1393–1401. https://doi.org/10.1056/NEJMoa1402670

    Article  PubMed  CAS  Google Scholar 

  6. Fengler K, Rommel KP, Okon T et al (2016) Renal sympathetic denervation in therapy resistant hypertension—pathophysiological aspects and predictors for treatment success. World J Cardiol 8:436–446. https://doi.org/10.4330/wjc.v8.i8.436

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tsioufis C, Ziakas A, Dimitriadis K et al (2017) Erratum to: Blood pressure response to catheter-based renal sympathetic denervation in severe resistant hypertension: data from the Greek Renal Denervation Registry (Clin Res Cardiol, 10.1007/s00392-016-1056-z). Clin Res Cardiol 106:392. https://doi.org/10.1007/s00392-017-1084-3

    Article  PubMed  CAS  Google Scholar 

  8. Kulenthiran S, Ewen S, Böhm M, Mahfoud F (2017) Hypertension up to date: SPRINT to SPYRAL. Clin Res Cardiol 106:475–484. https://doi.org/10.1007/s00392-017-1095-0

    Article  PubMed  Google Scholar 

  9. Ott C, Kopp C, Dahlmann A et al (2018) Impact of renal denervation on tissue Na+ content in treatment-resistant hypertension. Clin Res Cardiol 107:42–48. https://doi.org/10.1007/s00392-017-1156-4

    Article  PubMed  CAS  Google Scholar 

  10. Persu A, Jin Y, Baelen M et al (2014) Eligibility for renal denervation: experience at 11 European expert centers. Hypertension 63:1319–1325. https://doi.org/10.1161/HYPERTENSIONAHA.114.03194

    Article  PubMed  CAS  Google Scholar 

  11. Prado JC, Salado D, Ruilope LM, Segura J (2016) Second denervation in a patient with resistant hypertension. Clin Res Cardiol 105:880–883. https://doi.org/10.1007/s00392-016-0997-6

    Article  PubMed  Google Scholar 

  12. Lu D, Wang K, Liu Q et al (2016) Reductions of left ventricular mass and atrial size following renal denervation: a meta-analysis. Clin Res Cardiol 105:648–656. https://doi.org/10.1007/s00392-016-0964-2

    Article  PubMed  Google Scholar 

  13. Sharp ASP, Davies JE, Lobo MD et al (2016) Renal artery sympathetic denervation: observations from the UK experience. Clin Res Cardiol 105:544–552. https://doi.org/10.1007/s00392-015-0959-4

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fengler K, Heinemann D, Okon T et al (2016) Renal denervation improves exercise blood pressure: insights from a randomized, sham-controlled trial. Clin Res Cardiol 105:592–600. https://doi.org/10.1007/s00392-015-0955-8

    Article  PubMed  Google Scholar 

  15. Donazzan L, Mahfoud F, Ewen S et al (2016) Effects of catheter-based renal denervation on cardiac sympathetic activity and innervation in patients with resistant hypertension. Clin Res Cardiol 105:364–371. https://doi.org/10.1007/s00392-015-0930-4

    Article  PubMed  Google Scholar 

  16. Schumacher K, Dagres N, Hindricks G et al (2017) Characteristics of PR interval as predictor for atrial fibrillation: association with biomarkers and outcomes. Clin Res Cardiol 106:767–775. https://doi.org/10.1007/s00392-017-1109-y

    Article  PubMed  Google Scholar 

  17. Townsend RR, Mahfoud F, Kandzari DE et al (2017) Catheter-based renal denervation in patients with uncontrolled hypertension in the absence of antihypertensive medications (SPYRAL HTN-OFF MED): a randomised, sham-controlled, proof-of-concept trial. Lancet. https://doi.org/10.1016/S0140-6736(17)32281-X

    Article  PubMed  Google Scholar 

  18. Mahfoud F, Schmieder RE, Azizi M et al (2017) Proceedings from the 2nd European clinical consensus conference for device-based therapies for hypertension: State of the art and considerations for the future. Eur Heart J 38:3272–3281a. https://doi.org/10.1093/eurheartj/ehx215

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hijmering ML, Stroes ESG, Olijhoek J et al (2002) Sympathetic activation markedly reduces endothelium-dependent, flow-mediated vasodilation. J Am Coll Cardiol 39:683–688. https://doi.org/10.1016/S0735-1097(01)01786-7

    Article  PubMed  Google Scholar 

  20. Mueller C, Wodack K, Twelker K et al (2011) Darbepoetin improves endothelial function and increases circulating endothelial progenitor cell number in patients with coronary artery disease. Heart 97:1474–1478. https://doi.org/10.1136/hrt.2010.220798

    Article  PubMed  CAS  Google Scholar 

  21. Gosse P, Cremer A, Pereira H et al (2017) Twenty-four-hour blood pressure monitoring to predict and assess impact of renal denervation. Hypertension. https://doi.org/10.1161/HYPERTENSIONAHA.116.08448

    Article  PubMed  Google Scholar 

  22. Wang Y (2014) Is isolated systolic hypertension an indication for renal denervation? Front Physiol 5:1393–1401. https://doi.org/10.3389/fphys.2014.00505

    Article  Google Scholar 

  23. Eikelis N, Hering D, Marusic P et al (2015) The effect of renal denervation on endothelial function and inflammatory markers in patients with resistant hypertension. Int J Cardiol 188:96–98. https://doi.org/10.1016/j.ijcard.2015.04.041

    Article  PubMed  CAS  Google Scholar 

  24. Dörr O, Liebetrau C, Möllmann H et al (2014) Soluble fms-like tyrosine kinase-1 and endothelial adhesion molecules (Intercellular cell adhesion molecule-1 and vascular cell adhesion molecule-1) as predictive markers for blood pressure reduction after renal sympathetic denervation. Hypertension 63:984–990. https://doi.org/10.1161/HYPERTENSIONAHA.113.02266

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Steinmetz.

Ethics declarations

Conflict of interest

G.N. and N.W. received honoraria from Medtronic. M.S. and D.N. have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinmetz, M., Nelles, D., Weisser-Thomas, J. et al. Flow-mediated dilation, nitroglycerin-mediated dilation and their ratio predict successful renal denervation in mild resistant hypertension. Clin Res Cardiol 107, 611–615 (2018). https://doi.org/10.1007/s00392-018-1236-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-018-1236-0

Navigation