Skip to main content
Log in

Equation of state of3He near its liquid-vapor critical point

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report high-resolution measurements of the pressure coefficient (∂P/∂T)ρ for3He in both the one-phase and two-phase regions close to the critical point. These include data on 40 isochores over the intervals−0.1≤t≤+0.1 and−0.2≤Δρ≤+0.2, wheret=(T−T c )/T c and Δρ=(ρ−ρ c )/ρ c . We have determined the discontinuity Δ(∂P/∂T)ρ of (∂P/∂T)ρ between the one-phase and the two-phase regions along the coexistence curve as a function of Δρ. The asymptotic behavior of (1/ρ) Δ(∂P/∂T)ρ versus Δρ near the critical point gives a power law with an exponent (γ+β−1)β−1=1.39±0.02 for0.01≦Δρ≤0.2 or−1×10 −2t≤−10 −6, from which we deduce γ=1.14±0.01, using β=0.361 determined from the shape of the coexistence curve. An analysis of the discontinuity Δ(∂P/∂T)ρ with a correction-to-scaling term gives γ=1.17±0.02. The quoted errors are fromstatistics alone. Furthermore, we combine our data with heat capacity results by Brown and Meyer to calculate (∂μ/∂T c as a function oft. In the two-phase region the slope (∂2μ/∂T 2)ρc is different from that in the one-phase region. These findings are discussed in the light of the predictions from simple scaling and more refined theories and model calculations. For the isochores Δρ≠0 we form a scaling plot to test whether the data follow simple scaling, which assumes antisymmetry of μ−μ (ρ c ,t) as a function of Δγ on both sides of the critical isochore. We find that indeed this plot shows that the assumption of simple scaling holds reasonably well for our data over the range‖t‖≤0.1. A fit of our data to the “linear model” approximation is obtained for‖Δρ‖≤0.10 andt≤0.02, giving a value of γ=1.16±0.02. Beyond this range, deviations between the fit and the data are greater than the experimental scatter. Finally we discuss the (∂P/∂T)ρ data analysis for4He by Kierstead. A power law plot of (1/ρ) Δ∂P/∂T)ρ versus Δρ belowT c leads to γ=1.13±0.10. An analysis with a correction-to-scaling term gives γ=1.06±0.02. In contrast to3He, the slopes (∂2μ/∂T 2)ρc above and belowT c are only marginally different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. H. Levelt Sengers,Physica 73, 73 (1974).

    Google Scholar 

  2. M. S. Green, M. F. Cooper, and J. M. H. Levelt Sengers,Phys. Rev. Lett. 26, 492 (1971).

    Google Scholar 

  3. F. J. Cook and M. S. Green, to be published.

  4. J. J. Rehr and N. D. Mermin,Phys. Rev. A 8, 472 (1973).

    Google Scholar 

  5. B. Widom and J. S. Rowlinson,J. Chem. Phys. 52, 1670 (1970).

    Google Scholar 

  6. B. Widom and F. H. Stillinger,J. Chem. Phys. 58, 616 (1973).

    Google Scholar 

  7. N. D. Mermin and J. J. Rehr,Phys. Rev. A 4, 2408 (1971) and references therein.

    Google Scholar 

  8. G. W. Mulholland, J. A. Zollweg, and J. M. H. Levelt Sengers,J. Chem. Phys. 62, 2535 (1975), and reference to experimental work therein.

    Google Scholar 

  9. H. A. Kierstead,Phys. Rev. A 3, 329 (1971).

    Google Scholar 

  10. H. A. Kierstead,Phys. Rev. A 7, 242 (1973); and Order Document NAPS 01968, from ASIS-National Auxiliary Publications Service, c/o CCM Information Corporation, 909 Third Avenue, New York, N.Y. 10022.

    Google Scholar 

  11. P. Schofield, J. D. Litster, and John T. Ho,Phys. Rev. Lett. 23, 1098 (1969).

    Google Scholar 

  12. M. R. Moldover,Phys. Rev. 182, 342 (1969).

    Google Scholar 

  13. B. Widom,J. Chem. Phys. 43, 3898 (1965).

    Google Scholar 

  14. B.A. Wallace and H. Meyer,Phys. Rev. A 2, 1536, 1610 (1970); B. A. Wallace,Phys. Rev. A 5, 953 (1972).

    Google Scholar 

  15. M. R. Moldover, Ph.D. thesis, Stanford University, 1966.

  16. G. R. Brown and H. Meyer,Phys. Rev. A 6, 364 (1972).

    Google Scholar 

  17. R. B. Griffiths,Phys. Rev. 158, 176 (1967).

    Google Scholar 

  18. M. Vicentini-Missoni, J. M. H. Levelt Sengers, and M. S. Green,J. Res. NBS 73A, 563 (1969).

    Google Scholar 

  19. C. N. Yang and C. P. Yang,Phys. Rev. Lett. 13, 303 (1964).

    Google Scholar 

  20. P. Schofield,Phys. Rev. Lett. 22, 606 (1969).

    Google Scholar 

  21. C. C. Huang and J. T. Ho,Phys. Rev. A 7, 1304 (1973).

    Google Scholar 

  22. G. Goellner, R. P. Behringer, and H. Meyer,J. Low Temp. Phys. 13, 113 (1973).

    Google Scholar 

  23. T. C. Cetas and C. A. Swenson,Phys. Rev. Lett. 25, 338 (1970) and references therein.

    Google Scholar 

  24. R. P. Behringer, T. Doiron, and H. Meyer, Technical Report, Duke University, August 1975 (unpublished).

  25. C. E. Chase and G. O. Zimmerman,J. Low Temp. Phys. 11, 551 (1973).

    Google Scholar 

  26. T. Doiron, R. P. Behringer, and H. Meyer,J. Low Temp. Phys. 24, 345 (1976).

    Google Scholar 

  27. K. Ohbayashi and A. Ikushima,J. Low Temp. Phys. 19, 449 (1975).

    Google Scholar 

  28. J. M. H. Levelt Sengers and J. Sengers,Phys. Rev. A 12, 2622 (1975).

    Google Scholar 

  29. K. Ohbayashi and A. Ikushima,J. Low Temp. Phys. 15, 33 (1974).

    Google Scholar 

  30. A. Tominaga, A. Nakazawa, and Y. Narahara,Phys. Lett. 46A, 383 (1974).

    Google Scholar 

  31. S. Y. Wu, H. Reamer, and C. J. Pings, to be published.

  32. E. Gulari and C. J. Pings, to be published.

  33. L. R. Wilcox and W. T. Estler,J. Phys. (Paris)32C, 5A-175 (1971).

    Google Scholar 

  34. I. W. Smith, M. Giglio, and G. B. Benedek,Phys. Rev. Lett. 27, 1556 (1971).

    Google Scholar 

  35. H. E. Stanley,Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, New York, 1971).

    Google Scholar 

  36. S. S. Leung and R. B. Griffiths,Phys. Rev. A 8, 2670 (1973).

    Google Scholar 

  37. D. A. Dahl and M. R. Moldover,Phys. Rev. Lett. 27, 1421 (1971).

    Google Scholar 

  38. E. K. Riedel, H. Meyer, and R. P. Behringer,J. Low Temp. Phys. 22, 369 (1976).

    Google Scholar 

  39. J. A. Lipa, C. Edwards, and M. J. Buckingham,Phys. Rev. Lett. 25, 1086 (1970) and references therein.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Work supported by a grant from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behringer, R.P., Doiron, T. & Meyer, H. Equation of state of3He near its liquid-vapor critical point. J Low Temp Phys 24, 315–344 (1976). https://doi.org/10.1007/BF00655262

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00655262

Keywords

Navigation