Skip to main content

Patterns Identification and Data Mining in Weather and Climate

  • Book
  • © 2021

Overview

  • Updates our state-of-the-art knowledge of atmospheric multivariate data analysis including linear and nonlinear methods
  • Novel analyses methods provide more alternatives to explore
  • Many colored illustrations help identify minute details and highlight the value of the analysis method
  • Appendices help to follow the derivation methodology

Part of the book series: Springer Atmospheric Sciences (SPRINGERATMO)

This is a preview of subscription content, log in via an institution to check access.

Access this book

eBook USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Other ways to access

Licence this eBook for your library

Institutional subscriptions

Table of contents (17 chapters)

Keywords

About this book

Advances in computer power and observing systems has led to the generation and accumulation of large scale weather & climate data begging for exploration and analysis. Pattern Identification and Data Mining in Weather and Climate presents, from different perspectives, most available, novel and conventional, approaches used to analyze multivariate time series in climate science to identify patterns of variability, teleconnections, and reduce dimensionality. The book discusses different methods to identify patterns of spatiotemporal fields. The book also presents machine learning with a particular focus on the main methods used in climate science. Applications to atmospheric and oceanographic data are also presented and discussed in most chapters. To help guide students and beginners in the field of weather & climate data analysis, basic Matlab skeleton codes are given is some chapters, complemented with a list of software links toward the end of the text. A number oftechnical appendices are also provided, making the text particularly suitable for didactic purposes.

The topic of EOFs and associated pattern identification in space-time data sets has gone through an extraordinary fast development, both in terms of new insights and the breadth of applications. We welcome this text by Abdel Hannachi who not only has a deep insight in the field but has himself made several contributions to new developments in the last  15 years.

                                                                                                               - Huug van den Dool, Climate Prediction Center, NCEP,  College Park, MD, U.S.A.

Now that weather and climate science is producing ever larger and richer data sets, the topic of pattern extraction and interpretation has become an essential part. This book provides an up to date overview of the latest techniques and developments in this area.

                                      - Maarten Ambaum, Department of Meteorology, University of Reading, U.K.

This nicely and expertly written book covers a lot of ground, ranging from classical linear pattern identification techniques to more modern machine learning, illustrated with examples from weather & climate science. It will be very valuable both as a tutorial for graduate and postgraduate students and as a reference text for researchers and practitioners in the field.

               - Frank Kwasniok, College of Engineering, University of Exeter, U.K.

 


Authors and Affiliations

  • Department of Meteorology, MISU, Stockholm University, Stockholm, Sweden

    Abdelwaheb Hannachi

About the author

Abdelwaheb Hannachi is an Associate Professor in the Department of Meteorology of Stockholm University, MISU. He currently serves as editor in chief of Tellus A: Dynamic Meteorology and Oceanography. Abdel. teaches a number of undergraduate and postgraduate courses, including dynamic meteorology, statistical climatology, and numerical weather prediction and data assimilation, and boundary layer turbulence. His main research interests are large-scale dynamics, teleconnections, nonlinearity in weather and climate in addition to extremes and forecasting.

Bibliographic Information

Publish with us