Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Glacial–Holocene salinity changes in the Mediterranean Sea: hydrographic and depositional effects

Abstract

OXYGEN isotope changes as recorded by Pleistocene foraminifera from open-ocean sediments are primarily a function of changes in the isotopic composition of the global seawater reservoir caused by ice-volume changes, with a secondary temperature component1. Oxygen isotope records from marginal basins such as the Gulf of Mexico2, the Mediterranean Sea3–5 and the Red Sea6 also exhibit the global signal but are far more complicated owing to the strong overprint of local climate conditions. In particular, glacial–interglacial changes in continental aridity and river runoff produce significant salinity changes in these semi-enclosed basins. Using available oxygen isotope records we estimate that glacial (18,000 yr BP) salinities in the eastern and western Mediterranean Sea were 2.7‰ and 1.2‰ higher, respectively, than at present. These elevated glacial salinities played an important part in preconditioning the eastern Mediterranean for the eventual accumulation of organic carbon-rich sediments (sapropels) at the end of deglaciation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Shackleton, N. J. & Opdyke, N. D. Quat. Res. 3, 39–55 (1973).

    Article  CAS  Google Scholar 

  2. Leventer, A., Williams, D. F. & Kennett, J. P. Earth planet. Sci. Lett. 59, 11–17 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Thunell, R. C. & Williams, D. F. Palaeogeogr. Palaeoclimatal. Palaeoecol. 44, 23–39 (1983).

    Article  ADS  CAS  Google Scholar 

  4. Jenkins, J. A. & Williams, D. F. Mar. Micropaleont. 8, 521–534 (1984).

    Article  ADS  Google Scholar 

  5. Vergnaud Grazzini, C., Devaux, M. & Znaidi, J. Mar. Micropaleont. 10, 35–69 (1986).

    Article  ADS  Google Scholar 

  6. Deuser, W. G., Ross, E. H. & Waterman, L. S. Science 191, 1168–1170 (1976).

    Article  ADS  CAS  Google Scholar 

  7. Vergnaud Grazzini, C. et al. Mar. Micropaleont. 13, 1–21 (1988).

    Article  ADS  Google Scholar 

  8. Devaux, M. thesis, Univ. Bordeaux (1985).

  9. Vergnaud Grazzini, C. Science 190, 272–274 (1975).

    Article  ADS  Google Scholar 

  10. Vergnaud Grazzini, C. in Geological Evolution of the Mediterranean Basin (eds Stanley, D. J. & Wezel, F. C.) 413–451 (Springer, New York, 1985).

    Book  Google Scholar 

  11. Rotschy, F., Vergnaud Grazzini, C., Bellaiche, G. & Chamley, H. Paleogeogr. Paleoclim. Paleoecol. 11, 125–145 (1972).

    Article  ADS  Google Scholar 

  12. Paterne, M., Guichard, F., Labyrie, J., Gillot, P. & Duplessy, J. C. Mar. Geol. 72, 259–285 (1986).

    Article  ADS  CAS  Google Scholar 

  13. Vergnaud Grazzini, C., Ryan, W. B. F. & Cita, M. B. Mar. Micropaleont. 2, 353–370 (1977).

    Article  ADS  Google Scholar 

  14. Rossignol Strick, M., Nesteroff, W., Olive, P. & Vergnaud Grazzini, C. Nature 295, 105–110 (1982).

    Article  ADS  Google Scholar 

  15. Buckley, H. A., Johnson, L. R., Shackleton, N. J. & Blow, R. A. Deep Sea Res. 29, 739–766 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Luz, B. Nature 278, 847–848 (1979).

    Article  ADS  Google Scholar 

  17. Murat, A. thesis, Univ. Perpignan (1984).

  18. Sutherland, H. E., Calvert, S. E. & Morris, R. J. Mar. Geol. 56, 79–92 (1984).

    Article  ADS  CAS  Google Scholar 

  19. Berger, W. H., Killingley, J. S. & Vincent, E. Nature 314, 156–158 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Duplessey, J. C. et al. Nature 320, 350–352 (1986).

    Article  ADS  Google Scholar 

  21. Bard, E. et al. Nature 328, 791–794 (1987).

    Article  ADS  Google Scholar 

  22. Labyrie, L., Duplessy, J. C. & Blank, P. Nature 327, 477–482 (1987).

    Article  ADS  Google Scholar 

  23. Thiede, J. Nature 276, 680–683 (1978).

    Article  ADS  Google Scholar 

  24. Thunell, R. C. Quat. Res. 11, 353–372 (1979).

    Article  Google Scholar 

  25. Epstein, S., Buchsbaum, R., Lowenstam, H. A. & Urey, H. C. Bull. geol. Soc. Am. 64, 1315–1326 (1953).

    Article  CAS  Google Scholar 

  26. Thunell, R. C., Williams, D. F. & Howell, M. Paleoceanography 2, 661–678 (1987).

    Article  ADS  Google Scholar 

  27. Broecker, W. S. Quat. Res. 26, 121–134 (1986).

    Article  CAS  Google Scholar 

  28. Streeet, F. A. & Grove, A. T. Quat. Res. 12, 83–118 (1979).

    Article  Google Scholar 

  29. Hamilton, A. C. in East African Vegetation (eds Lind, E. & Morrison, M. E. S.) 188–209 (Longman, London, 1974).

    Google Scholar 

  30. Zahn, R., Sarnthein, M. & Erlenkeuser, H. Paleoceanography 2, 543–559 (1987).

    Article  ADS  Google Scholar 

  31. Rossignol-Strick, M. Nature 304, 46–49 (1983).

    Article  ADS  Google Scholar 

  32. Huang, T. C. & Stanley, D. J. The Mediterranean Sea: A Natural Sediment Laboratory, 512–559 (Dowden, Hutchins and Ross, Stroudsburg, 1972).

    Google Scholar 

  33. Olausson, E. Rep. Swed. Deep Sea Exped. 8, 353–391 (1961).

    Google Scholar 

  34. Calvert, S. E. Oceanol. Acta 6, 255–267.

  35. Howell, M. & Thunell, R. C. Eos 69, 382 (1988).

    Google Scholar 

  36. Maldonado, A. & Stanley, D. Mar. Geol. 31, 215–250 (1979).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thunell, R., Williams, D. Glacial–Holocene salinity changes in the Mediterranean Sea: hydrographic and depositional effects. Nature 338, 493–496 (1989). https://doi.org/10.1038/338493a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338493a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing