Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient generation of human T cells from a tissue-engineered thymic organoid

Abstract

Biocompatible inorganic matrices have been used to enhance bone repair by integrating with endogenous bone architecture. Hypothesizing that a three-dimensional framework might support reconstruction of other tissues as well, we assessed the capacity of a tantalum-coated carbon matrix to support reconstitution of functioning thymic tissue. We engineered a thymic organoid by seeding matrices with murine thymic stroma. Co-culture of human bone marrow-derived hematopoietic progenitor cells within this xenogeneic environment generated mature functional T cells within 14 days. The proportionate T-cell yield from this system was highly reproducible, generating over 70% CD3+ T cells from either AC133+ or CD34+ progenitor cells. Cultured T cells expressed a high level of T-cell receptor excision circles (TREC), demonstrating de novo T lymphopoiesis, and function of fully mature T cells. This system not only facilitates analysis of the T-lymphopoietic potential of progenitor cell populations; it also permits ex vivo genesis of T cells for possible applications in treatment of immunodeficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of human T cells on the thymic organoid.
Figure 2: (A) Intrasample variability.
Figure 3: (A) T-cell proliferation in response to mitogenic stimulation.

Similar content being viewed by others

References

  1. Bobyn, J.D., Stackpool, G.J., Hacking, S.A., Tanzer, M. & Krygier, J.J. Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial. J. Bone Joint Surg. Br. 81, 907–914 (1999).

    Article  CAS  Google Scholar 

  2. Black, J. Biological performance of tantalum. Clin. Mater. 16, 167–173 (1994).

    Article  CAS  Google Scholar 

  3. Boyd, R.L. et al. The thymic microenvironment. Immunol. Today 14, 445–459 (1993).

    Article  CAS  Google Scholar 

  4. Van Vliet, E., Melis, M. & Van Ewijk, W. Monoclonal antibodies to stromal cell types of the mouse thymus. Eur. J. Immunol. 14, 524–529 (1984).

    Article  CAS  Google Scholar 

  5. Van Vilet, E., Jenkinson, E.J., Kingston, R., Owen, J.J. & Van Ewijk, W. Stromal cell types in the developing thymus of the normal and nude mouse embryo. Eur. J. Immunol. 15, 675–681 (1985).

    Article  Google Scholar 

  6. van Ewijk, W. Cell surface topography of thymic microenvironments. Lab. Invest. 59, 579–590 (1988).

    CAS  PubMed  Google Scholar 

  7. van Ewijk, W. T-cell differentiation is influenced by thymic microenvironments. Annu. Rev. Immunol. 9, 591–615 (1991).

    Article  CAS  Google Scholar 

  8. Freedman, A.R., Zhu, H., Levine, J.D., Kalams, S. & Scadden, D.T. Generation of human T lymphocytes from bone marrow CD34+ cells in vitro. Nat. Med. 2, 46–51 (1996).

    Article  CAS  Google Scholar 

  9. Gardner, J.P. et al. T-lymphopoietic capacity of cord blood-derived CD34+ progenitor cells. Exp. Hematol. 26, 991–999 (1998).

    CAS  PubMed  Google Scholar 

  10. Pawelec, G., Muller, R., Rehbein, A., Hahnel, K. & Ziegler, B.L. Extrathymic T cell differentiation in vitro from human CD34+ stem cells. J. Leukoc. Biol. 64, 733–739 (1998).

    Article  CAS  Google Scholar 

  11. Galy, A., Verma, S., Barcena, A. & Spits, H. Precursors of CD3+CD4+CD8+ cells in the human thymus are defined by expression of CD34. Delineation of early events in human thymic development. J. Exp. Med. 178, 391–401 (1993).

    Article  CAS  Google Scholar 

  12. Anderson, G., Jenkinson, E.J., Moore, N.C. & Owen, J.J. MHC class II-positive epithelium and mesenchyme cells are both required for T-cell development in the thymus. Nature 362, 70–73 (1993).

    Article  CAS  Google Scholar 

  13. Barcena, A. et al. Phenotypic and functional analysis of T-cell precursors in the human fetal liver and thymus: CD7 expression in the early stages of T- and myeloid-cell development. Blood 82, 3401–3414 (1993).

    CAS  PubMed  Google Scholar 

  14. Barcena, A. et al. Lymphoid and myeloid differentiation of fetal liver CD34+ lineage- cells in human thymic organ culture. J. Exp. Med. 180, 123–132 (1994).

    Article  CAS  Google Scholar 

  15. Fisher, A.G. et al. Human thymocyte development in mouse organ cultures. Int. Immunol. 2, 571–578 (1990).

    Article  CAS  Google Scholar 

  16. Yeoman, H. et al. Human bone marrow and umbilical cord blood cells generate CD4+ and CD8+ single-positive T cells in murine fetal thymus organ culture. Proc. Natl. Acad. Sci. USA 90, 10778–10782 (1993).

    Article  CAS  Google Scholar 

  17. Res, P. et al. CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 87, 5196–5206 (1996).

    CAS  PubMed  Google Scholar 

  18. Plum, J., De Smedt, M., Defresne, M.P., Leclercq, G. & Vandekerckhove, B. Human CD34+ fetal liver stem cells differentiate to T cells in a mouse thymic microenvironment. Blood 84, 1587–1593 (1994).

    CAS  PubMed  Google Scholar 

  19. Shortman, K., Egerton, M., Spangrude, G.J. & Scollay, R. The generation and fate of thymocytes. Semin. Immunol. 2, 3–12 (1990).

    CAS  PubMed  Google Scholar 

  20. van Ewijk, W. et al. Thymic microenvironments, 3-D versus 2-D? Semin. Immunol. 11, 57–64 (1999).

    Article  CAS  Google Scholar 

  21. Fujimoto, S. & Yamagishi, H. Isolation of an excision product of T-cell receptor alpha-chain gene rearrangements. Nature 327, 242–243 (1987).

    Article  CAS  Google Scholar 

  22. Okazaki, K., Davis, D.D. & Sakano, H. T cell receptor beta gene sequences in the circular DNA of thymocyte nuclei: direct evidence for intramolecular DNA deletion in V-D-J joining. Cell 49, 477–485 (1987).

    Article  CAS  Google Scholar 

  23. Livak, F. & Schatz, D.G. T-cell receptor alpha locus V(D)J recombination by-products are abundant in thymocytes and mature T cells. Mol. Cell Biol. 16, 609–618 (1996).

    Article  CAS  Google Scholar 

  24. Takeshita, S., Toda, M. & Yamagishi, H. Excision products of the T cell receptor gene support a progressive rearrangement model of the alpha/delta locus. EMBO J. 8, 3261–3270 (1989).

    Article  CAS  Google Scholar 

  25. Douek, D.C. et al. Changes in thymic function with age and during the treatment of HIV infection. Nature 396, 690–695 (1998).

    Article  CAS  Google Scholar 

  26. Genevee, C. et al. An experimentally validated panel of subfamily-specific oligonucleotide primers (V alpha 1-w29/V beta 1-w24) for the study of human T cell receptor variable V gene segment usage by polymerase chain reaction. Eur. J. Immunol. 22, 1261–1269 (1992).

    Article  CAS  Google Scholar 

  27. Zhang, X.M., Cathala, G., Soua, Z., Lefranc, M.P. & Huck, S. The human T-cell receptor gamma variable pseudogene V10 is a distinctive marker of human speciation. Immunogenetics 43, 196–203 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Scadden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poznansky, M., Evans, R., Foxall, R. et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat Biotechnol 18, 729–734 (2000). https://doi.org/10.1038/77288

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/77288

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing