Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active movement of T cells away from a chemokine

Abstract

Movement towards or away from a given stimulus guides the directional migration of prokaryotes, simple eukaryotes and neurons. As bi-directional cues may influence entry and exit of immune effector cells from tissue sites, we evaluated the migratory responses of T-cell subsets to varying concentrations of the chemokine stromal cell derived factor-1 (SDF-1). There was selective repulsion of subpopulations of T cells at high concentrations of recombinant SDF-1 or naturally occurring bone marrow-derived SDF-1, which could be inhibited by pertussis toxin and antibody against the chemokine receptor CXCR4. Distinct sensitivity profiles to genistein, herbimycin and 8-Br-cAMP biochemically distinguished movement of cells towards or away from an SDF-1 gradient. In vivo, antigen-induced T-cell recruitment into the peritoneal cavity was reversed by high but not low concentrations of SDF-1. The phenomenon of movement away from a chemokine represents a previously unknown mechanism regulating the localization of mature T cells. It adds to the functional repertoire of chemokines that may participate in immune physiology and may be applied therapeutically to alter the immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: SDF-1 induces cell movement towards and away from a chemokine concentration gradient.
Figure 2: Digitized time lapse photography of cells moving in the presence of a gradient of SDF-1.
Figure 3: Movement towards and away from SDF-1 has different sensitivities to inhibitors and cyclic nucleotide agonists.
Figure 4: Checkerboard analysis of T-cell chemotaxis in response to BMCM.
Figure 5: SDF-1 at high concentrations abrogates inflammatory infiltration in vivo.

Similar content being viewed by others

References

  1. Bailey, G.B., Leitch, G.J. & Day, D.B. Chemotaxis by entamoeba histolytica. J. Protozool. 32, 341–346 ( 1985).

    Article  CAS  Google Scholar 

  2. Dunn, G. in Biology of the Chemotactic Response (eds. J.P. Armitage and J.M. Lackie) 1–14 Cambridge University Press, Cambridge, UK, 1990).

    Google Scholar 

  3. Wilkinson, P. in Biology of the Chemotactic Response (eds. J.P. Armitage and J.M. Lackie) 323–346 (Cambridge University Press, Cambridge, UK, 1990).

    Google Scholar 

  4. Tso, W.W. & Adler, J. Negative chemotaxis in escherichia coli. J. Bacteriol. 118, 560 ( 1974).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Keating, M.T. & Bonner, J.T. Negative chemotaxis in cellular slime molds. J. Bacteriol. 130, 144– 147 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Ward, M.J. & Zusman, D.R. Regulation of directed motility in Myxococcus xanthus. Mol. Microbiol. 24, 885–893 (1997).

    Article  CAS  Google Scholar 

  7. Taylor, B.L. & Johnson, M.S. Rewiring a receptor: negative output from positive input. FEBS Lett. 425, 377–381 (1998).

    Article  CAS  Google Scholar 

  8. Dodd, J. & Schuchardt, A. Axon guidance: a compelling case for repelling growth cones. Cell 81, 471 –474 (1995).

    Article  CAS  Google Scholar 

  9. Colormarino, S.A. & Tessier-Lavigne, M. The axonal chemoattractant is also chemorepellent for trochlear motor axons. Cell 81, 621–629 ( 1995).

    Article  Google Scholar 

  10. Wu, W. et al. Directional guidance of neuronal migration in the olfactory system by the protein Slit. Nature 400, 331– 336 (1999).

    Article  CAS  Google Scholar 

  11. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927– 941 (1999).

    Article  CAS  Google Scholar 

  12. Bashaw, G.J. & Goodman, C.S. Chimeric axon guidance receptors: the cytoplasmic domains of slit and netrin receptors specify attraction versus repulsion. Cell 97, 917– 926 (1999).

    Article  CAS  Google Scholar 

  13. Seeger, M.A. & Beattie, C.E. Attraction versus repulsion: modular receptors make the difference in axon guidance. Cell 97, 821–824 (1999).

    Article  CAS  Google Scholar 

  14. Song, H. et al. Conversion of neuronal growth cone responses from repulsion to attraction by cyclic nucleotides. Science 281, 1515–1518 (1998).

    Article  CAS  Google Scholar 

  15. Luster, A.D. Chemokines-chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338, 436–445 (1998).

    Article  CAS  Google Scholar 

  16. Baggiolini, M. Chemokines and leukocyte traffic. Nature 392, 565–568 (1998).

    Article  CAS  Google Scholar 

  17. Wells, T.N., Power, C.A. & Proudfoot, A.E. Definition, function and pathophysiological significance of chemokine receptors. Trends Pharmacol. Sci. 19, 376–380 (1998).

    Article  CAS  Google Scholar 

  18. Bleul, C.C. et al. The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 38, 829– 833 (1996).

    Article  Google Scholar 

  19. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  Google Scholar 

  20. Oberlin, E. et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 382, 833–835 (1996).

    Article  CAS  Google Scholar 

  21. Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A. & Springer, T.A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). J. Exp. Med. 184, 1101–1109 ( 1996).

    Article  CAS  Google Scholar 

  22. Kim, C.H., Pelus, L.M., White, J.R. & Broxmeyer, H.E. Differential chemotactic behavior of developing T-cells in response to thymic chemokines . Blood 91, 4434–4443 (1998).

    CAS  Google Scholar 

  23. Feng, Y., Broder, C.C., Kennedy, P.E. & Berger, E.A. HIV-1 entry cofactor: Functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872 (1996).

    Article  CAS  Google Scholar 

  24. Tashiro, K. et al. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261, 600–603 (1993).

    Article  CAS  Google Scholar 

  25. Shirozu, M. et al. Structure and chromosomal localization of the human stromal cell-derived factor 1 (SDF1) gene. Genomics 28, 495–500 (1995).

    Article  CAS  Google Scholar 

  26. Turner, L., Ward, S.G. & Westwick, J. RANTES-activated human T lymphocytes. A role for phosphoinositide 3-kinase. J. Immunol. 155, 2437– 2444 (1995).

    CAS  PubMed  Google Scholar 

  27. Turner, S.J., Ward, S.G. & Westiwick, J. Stimulation of tyrosine phosphorylation and phosphatidylinositol 3-kinase by MCP-1 in THP-1 cells. Biochem. Soc. Trans. 2, 216S (1977).

    Google Scholar 

  28. Ganju, R.K. et al. The alpha-chemokine, stromal cell-derived factor-1alpha, binds to the transmembrane G-protein-coupled CXCR-4 receptor and activates multiple signal transduction pathways. J. Biol. Chem. 273, 23169–23175 (1998).

    Article  CAS  Google Scholar 

  29. Daaka, Y., Luttrell, L.M. & Lefkowitz, R.J. Switching of the coupling of the beta2-adrenergic receptor to different G proteins by protein kinase A. Nature 390, 88–91 (1997).

    Article  CAS  Google Scholar 

  30. Selbie, L.A. & Hill, S.J. G protein-coupled-receptor cross-talk: the fine-tuning of multiple receptor-signaling pathways. Trends Pharmacol. Sci. 19, 87–93 (1998).

    Article  CAS  Google Scholar 

  31. Bacon, K.B., Premack, B.A., Gardner, P. & Schall, T.J. Activation of dual T-cell signaling pathways by the chemokine RANTES. Science 269, 1727–1730 ( 1995).

    Article  CAS  Google Scholar 

  32. Hoogewerf, A.J. et al. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36, 13570– 13578 (1997).

    Article  CAS  Google Scholar 

  33. Sutherland, HJ, Lansdorp, PM, Henkelman, DH, Eaves, AC, Eaves CJ . Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc. Natl. Acad. Sci. USA 87 :3584 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Scadden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poznansky, M., Olszak, I., Foxall, R. et al. Active movement of T cells away from a chemokine. Nat Med 6, 543–548 (2000). https://doi.org/10.1038/75022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/75022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing