Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure of a protein in a kinetic trap

Abstract

We have determined the structure of a metastable disulphide isomer of human insulin. Although not observed for proinsulin folding or insulin-chain recombination, the isomer retains ordered secondary structure and a compact hydrophobic core. Comparison with native insulin reveals a global rearrangement in the orientation of A- and B-chains. One face of the protein's surface is nevertheless in common between native and non-native structures. This face contains receptor-binding determinants, rationalizing the partial biological activity of the isomer. Structures of native and non-native disulphide isomers also define alternative three-dimensional templates. Threading of insulin-like sequences provide an experimental realization of the inverse protein-folding problem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 181, 223–30 (1973).

    CAS  PubMed  Google Scholar 

  2. Kuwajima, K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 6, 87–103 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Kim, P.S. & Baldwin, R.L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 59, 631–60 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Roder, H. Structural characterization of protein folding intermediates by protonmagnetic resonance and hydrogen exchange. Meth Enzymol. 176, 446–73 (1989).

    Article  CAS  Google Scholar 

  5. Weissman, J.S. & Kim, P.S. Kinetic role of nonnative species in the folding of bovine pancreatic trypsin inhibitor. Proc. natn. Acad. Sci. U.S.A. 89, 9900–9904 (1992).

    Article  CAS  Google Scholar 

  6. van Mierlo, C.P., Kemmink, J., Neuhaus, D., Darby, N.J. & Creighton, T.E. 1H NMR analysis of the partly-folded non-native two-disulphide intermediates (30–51,5–14) and (30–51,5–38)in the folding pathway of bovine pancreatic trypsin inhibitor. J. molec. Biol. 235, 1044–61 (1994).

    Article  CAS  PubMed  Google Scholar 

  7. van Mierlo, C.P., Darby, N.J., Keeler, J., Neuhaus, D., & Creighton, T.E. Partially folded conformation of the (30-51) intermediate in the disulphide folding pathway of bovine pancreatic trypsin inhibitor. 1H and 15N resonance assignments and determination of backbone dynamics from 15N relaxation measurements. J molec. Biol. 229, 1125–46 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Miranker, A., Robinson, C.V., Radford, S.E., Aplin, R.T. & Dobson, C.M. Detection of transient protein folding populations by mass spectrometry Science 262, 896–900 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Baker, D. & Agard, D.A. Kinetic versus thermodynamics in protein folding Biochemistry 33, 7505–7509 (1994).

    Article  CAS  PubMed  Google Scholar 

  10. Silen, J.L. & Agard, D.A. The α-lytic protease pro-region does not require a physical linkage to activate the protease domain in vivo. Nature 341, 462–464 (1989).

    Article  CAS  PubMed  Google Scholar 

  11. Mottonen, J. et al. Structural basis of latency in plasminogen activator inhibitor-1 Nature. 355, 270–273 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Carr, C.M. & Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hamagglutinin. Cell 73, 823–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Bullough, P.A., Hughson, F.M., Skehel, J.J. & Wiley, D.C. Structure of influenza haemagglutinin at the pH of membrane fusion Nature 371, 37–43 (1994).

    Article  CAS  PubMed  Google Scholar 

  14. Sieber, P.S. et al. Synthesis and biological activity of two disulphide bond isomers of human insulin: [A7–A11,A6–B7-cystine] and [A6–A7,A11–B7-cystine] insulin (human). Hoppe-Seyler's Z. Physiol. Chem. 359, 113–123 (1978).

    CAS  Google Scholar 

  15. Brown, H., Sanger, F. & Kitai, R. The structure of pig and sheep insulins. Biochem. J. 60, 556–565 (1955).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chan, S.J., Keim, P. & Steiner, D.F. Cell-free synthesis of rat preproinsulins: Characterization and partial aminoacid sequence determination. Proc. natn. Acad. Sci. U.S.A. 73, 1964–1968 (1976).

    Article  CAS  Google Scholar 

  17. Steiner, D.F., Cunningham, D., Spigelman, L. & Aten, B. Insulin biosynthesis: evidence for a precursor. Science 157, 697–700 (1967).

    Article  CAS  PubMed  Google Scholar 

  18. Tang, J.G. & Tsou, C.L. The insulin A and B chains contain structural information fior the formation of the native molecule. Biochem. J. 268, 429–435 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Oas, T.G. & Kim, P.S. A peptide model of a protein folding intermediate. Nature 336, 42–48 (1988).

    Article  CAS  PubMed  Google Scholar 

  20. Baker, E.N. et al.. The structure of 2 Zn pig insulin crystals at 1.5 Å resolution. Phil. Trans. R. Soc. Lond. B319, 369–456 (1988).

    Article  Google Scholar 

  21. Hua, Q.X., Shoelson, S.E., Kochoyan, M. & Weiss, M.A. Receptor binding redefined by a structural switch in a mutant human insulin. Nature 354, 238–241 (1991).

    Article  CAS  PubMed  Google Scholar 

  22. Bowie, J.U., Luthy, R. & Eisenberg, D.A. Method to identify protein sequences that fold into a kown three-dimensional structure. Science 253, 164–170 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. Hendlich, M. et al. Identification of native protein folds amongst a large number of incorrect models. The calculation of low energy conformations from potentials of mean force. J. molec. Biol. 216, 167–180 (1990).

    Article  CAS  PubMed  Google Scholar 

  24. Overington, J., Donnelly, D., Johnson, M.S., Sali, A. & Blundell, T.L. Environment-specific amino acid substitutions tables: Tertiary templates and predictions of protein folds. Prot. Sci. 1, 216–226 (1992).

    Article  CAS  Google Scholar 

  25. Derewenda, U. et al. The X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule: a completely inactive analogue. J. molec. Biol. 220, 425–433 (1991).

    Article  CAS  PubMed  Google Scholar 

  26. Wüthrich, K. NMR of proteins and nucleic acids (Wiley, New York, 1986).

  27. Bundi, A. & Wüthrich, K. 1H-NMR parameters of the common amino avid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers 18, 285–298 (1979).

    Article  CAS  Google Scholar 

  28. Havel, T.F. An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. Prog. Biophys. molec. Biol. 56, 43–78 (1991).

    Article  CAS  Google Scholar 

  29. Chothia, C., Lesk, A.M., Dodson, G.G. & Hodgskin, D.C. Transmission of conformational change in insulin. Nature 302, 500–505 (1983).

    Article  CAS  PubMed  Google Scholar 

  30. Eisenberg, D. & McLachlan, A.D. Solvation energy in protein folding and binding. Nature 319, 199–203 (1986).

    Article  CAS  PubMed  Google Scholar 

  31. Novotny, J., Bruccoleri, R. & Karplus, M. An analysis of incorrectly folded protein models. Implications for structure predictions. J. molec. Biol. 177, 787–818 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Novotny, J., Rashin, A.A. & Bruccoleri, R.E. Criteria that discriminate between native proteins and incorrectly folded models. Proteins 4, 19–30 (1988).

    Article  CAS  PubMed  Google Scholar 

  33. Cooke, R.M. et al. The solution structure of echistatin: evidence for disulfide bind rearrangement in homologous snake toxins. Prot. Engng. 5, 473–477 (1992).

    Article  CAS  Google Scholar 

  34. Hober, S., Forsberg, G., Palm, G., Hartmanis, M. & Nilsson, B. Disulfide exchange folding of insulin-like growth factor I. Biochemistry 31, 1749–1756 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Miller, J.A. et al. Oxidative refolding of insulin-like growth factor 1 yields two products of similar thermodynamic stability: A bifurcating protein-folding pathway. Biochemistry 32, 5203–5213 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Hober, S., Hansson, A., Uhlen, M. & Nilsson, B. Folding of insulin-like growth factor I is thermodynamically controlled by insulin-like growth factor binding protein. Biochemistry 33, 6758–6761 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. DiMarchi, R.D. et al. Synthesis of a fast-acting insulin based on structural homology with insulin-like growth factror I in: Peptides: Proceedings of the Twelfth American Peptide Symposium (Smith, J. A., & Rivier, J. E., Eds.) 26–28 (ESCOM Science Publishers B. V, Leiden, The Netherlands, 1992).

    Chapter  Google Scholar 

  38. Owers-Narhi, L. et al. role of native disulfide bonds in the structure and activity of insulin-like growth factor I (IGF-I): genetic models of protein-folding intermediates″. Biochemistry 32, 5214–5221 (1993).

    Article  Google Scholar 

  39. Cooke, R.M. Harvey, I.S. & Campbell, I.D. Solution structure of human insulin-like growth factor 1: a nuclear magnetic resonance and restrained molecular dynamics study. Biochemistry 30, 5484–91 (1991).

    Article  CAS  PubMed  Google Scholar 

  40. Sali, A., Shakhnovich, E. & Karplus, M. How does a protein fold? Nature 369, 248–251 (1994).

    Article  CAS  PubMed  Google Scholar 

  41. Baldwin, T.O., Ziegler, M.M., Chaffotte, A.F. & Goldberg, M.E. Contribution of folding steps involving the individual subunits of bacterial luciferase to the assembly of the active heterodimeric enzyme. J. biol. Chem. 268, 10766–72 (1993).

    CAS  PubMed  Google Scholar 

  42. Kitagawa, K., Ogawa, H., Burke, G.I., Chan & Katsoyannis, P.G. Critical role of the A2 amino acid residue in the biological activity of insulin: [2-glycine-A] and [2-alanine-A]-insulins. Biochemistry 23, 1405–1413 (1984).

    Article  CAS  PubMed  Google Scholar 

  43. Markussen, J. Single-chain des-(B30) insulin. Int. J. peptide prot. Res. 26, 70–77 (1985).

    Article  CAS  Google Scholar 

  44. Kobayashi, M. et al. Receptor binding and negative cooperativity of a mutant insulin, [LeuA3]-insulin. Biochem. biophys. Res. Comm. 137, 250–257 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Mirmira, R. & Tager, H.S. Role of the phenylalanine B24 sidechain in directing insulin interaction with its receptor. J. biol. Chem. 264, 6349–6354 (1989).

    CAS  PubMed  Google Scholar 

  46. Casaretto, M. et al. Shortened insulin with enhanced in vitro potency. Biol. Chem. Hoppe-Seyler 368, 709–716 (1987).

    Article  CAS  PubMed  Google Scholar 

  47. Chance, R.E. et al. The production of human insulin using recombinant DNA technology and a new chain recombination procedure in: Peptides: Proceedings of the Seventh American Peptide Symposium (eds. Rich, D. H., and Gross E., ) 721–728, (Pierce Chemical Co., Rockford, IL, USA 1981).

    Google Scholar 

  48. Hubel, R.E. Insulin-like growth factors I and II. Eur. J. Biochem. 190, 445–62 (1990).

    Article  Google Scholar 

  49. Bi, R.C., Dauter, Z., Dodson, E., Dodson, G., Giordano, F. & Reynolds, C. Insulin structure as a modified and monomeric molecule. Biopolymers 23, 391–395 (1984)

    Article  CAS  Google Scholar 

  50. Dai, J.-B. Lou, M.-Z. You, J.-M. & Liang, D.-C. Refinement of the structure of despentapetide (B26-B30) insulin at 1.5 Å resolution. Scientia. sin. 30 (1), 55–65 (1987).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hua, QX., Gozani, S., Chance, R. et al. Structure of a protein in a kinetic trap. Nat Struct Mol Biol 2, 129–138 (1995). https://doi.org/10.1038/nsb0295-129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nsb0295-129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing