Skip to main content
Log in

Pole reversal and the development of cell asymmetry during division in cryptomonad flagellates

  • Published:
Protoplasma Aims and scope Submit manuscript

Summary

A unique form of cell division is reported for the cellsKomma caudata andCryptomonas ovata (Cryptophyceae). During cytokinesis, the posterior tail-like region of each daughter cell develops from the anterior region of the parental cell. This process, termed “pole reversal”, involves a major realignment in overall cell polarity as well as alterations to cytoplasmic and surface components. Pole reversal may be a consequence of flagellar apparatus transformation and reorientation during division, and pole reversal may facilitate the development of the asymmetric cell shape in daughter cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brett SJ, Wetherbee R (1986) A comparative study of periplast structure inCryptomonas cryophila andC. ovata (Cryptophyceae). Protoplasma 131: 23–31

    Google Scholar 

  • Hibberd DJ, Greenwood AD, Griffiths HB (1971) Observations of the ultrastructure of the flagella and periplast in the Cryptophyceae. Br Phycol J 6: 61–72

    Google Scholar 

  • Hill DRA (1991)Chroomonas and other blue-green cryptomonads. J Phycol 27: 133–145

    Google Scholar 

  • —, Wetherbee R (1989) A re-appraisal of the genusRhodomonas (Cryptophyceae). Phycologia 28: 143–158

    Google Scholar 

  • Hollande A (1952) Classe de Cryptomonadines. In: Grassé PP (ed) Zoologie, vol 1, fasc 1. Masson, Paris, pp 285–308

    Google Scholar 

  • Holmes JA, Dutcher SK (1989) Cellular asymmetry inChlamydomonas reinhardtii. J Cell Sci 94: 273–285

    PubMed  Google Scholar 

  • Johnson UG, Porter KR (1968) Fine structure of cell division inChlamydomonas reinhardtii. J Cell Biol 38: 403–425

    PubMed  Google Scholar 

  • Kugrens P, Lee RE (1987) An ultrastructural survey of cryptomonad periplasts using quick-freezing freeze-fracture techniques. J Phycol 23: 365–376

    Google Scholar 

  • McFadden GI (1993) Second-hand chloroplasts: evolution of cryptomonad algae. In: Callow JA (ed) Advances in botanical research, vol 19. Academic Press, Oxford, pp 189–230

    Google Scholar 

  • McKerracher L, Gibbs SP (1981) Cell and nucleomorph division in the algaCryptomonas. Can J Bot 60: 2440–2452

    Google Scholar 

  • Melkonian M, Preisig HR (1986) A light and electron microscopic study ofScherffelia dubia, a new member of the scaly green flagellates (Prasinophyceae). Nord J Bot 6: 235–256

    Google Scholar 

  • —, Robenek H (1984) The eyespot apparatus of flagellated green algae: a critical review. Prog Phycol Res 3: 193–268

    Google Scholar 

  • Meyer SR, Pienaar RN (1984) Mitosis and cytokinesis inChroomonas africana Meyer and Pienaar (Cryptophyceae). S Afr J Bot 3: 320–330

    Google Scholar 

  • Mignot J-P, Joyon L, Pringsheim E-G (1968) Compléments a l'étude cytologique des cryptomonadines. Protistologica 4: 493–506

    Google Scholar 

  • Moestrup Ø (1978) On the phylogenetic validity of the flagellar apparatus in green algae and other chlorophylla andb containing plants. BioSystems 10: 117–144

    PubMed  Google Scholar 

  • Oakley BR, Bisalputra T (1977) Mitosis and cell division inCryptomonas (Cryptophyceae). Can J Bot 55: 2789–2800

    Google Scholar 

  • —, Dodge JD (1976) The ultrastructure of mitosis inChroomonas salina (Cryptophyceae). Protoplasma 88: 241–254

    Google Scholar 

  • O'Kelly CJ, Floyd GL (1984) Flagellar apparatus absolute orientations and the phylogeny of the green algae. BioSystems 16: 227–251

    Google Scholar 

  • Perasso L, Hill DRA, Wetherbee R (1992) Transformation and development of the flagellar apparatus ofCryptomonas ovata (Cryptophyta) during cell division. Protoplasma 170: 53–67

    Google Scholar 

  • Roberts K (1984) Structure and significance of the cryptomonad flagellar apparatus. I.Cryptomonas ovata (Cryptophyta). J Phycol 20: 590–599

    Google Scholar 

  • Santore UJ (1984) Some aspects of taxonomy in the Cryptophyceae. New Phytol 98: 627–646

    Google Scholar 

  • — (1985) A cytological survey of the genusCryptomonas (Cryptophyceae) with comments on its taxonomy. Arch Protistenk 130: 1–52

    Google Scholar 

  • Ward B, Bowen M (1979) Cytokinesis inCryptomonas ovata (Cryptophyceae). Protoplasma 98: 275–277

    Google Scholar 

  • Wetherbee R, Hill DRA, McFadden GI (1986) Periplast structure of the cryptomonad flagellateHemiselmis brunnescens. Protoplasma 131: 11–22

    Google Scholar 

  • Wetherbee R, Koutoulis A, Andersen RA (1992) The microarchitecture of the chrysophycean cytoskeleton. In: Menzel D (ed) The cytoskeleton of the algae. CRC Press, Boca Raton, pp 1–18

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perasso, L., Brett, S.J. & Wetherbee, R. Pole reversal and the development of cell asymmetry during division in cryptomonad flagellates. Protoplasma 174, 19–24 (1993). https://doi.org/10.1007/BF01404038

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01404038

Keywords

Navigation