Skip to main content
Log in

Summary

Biocompatible calcium phosphate ceramics has been used for several years in orthopeadic surgery. We have been using two new synthetic biphasic calcium phosphate ceramics (BCP) since September 1996 for bone defect filling in any orthopaedic or trauma operation where autograft use was not possible or even wanted. The first, Eurocer 400® has 300 to 500 micron wide macropores with a totally interconnected porosity. This salt seed like product can be used in bone defect filling, when solidity is not a major concern. The second, Eurocer 200® has not totally interconnected 200 micron large pores. Its main characteristic is a mechanical resistance up to 30 Mpa. We use it in any case of weight-bearing surgery. Different sizes and presentation forms are available and will be chosen according to the recipient site shape. We report one hundred and fifty cases with a six to thirty month follow-up. In one third of the patients hip revision surgery was addressed. Another third concerned recent trauma or sequelae cases,.whereas the last third involved cold orthopaedic procedures. General principles are the need of a living and non-infected site after thorough debridement if necessary. Osteocompatibility of calcium phosphate ceramic is confirmed by our results. We report no mechanical failure. In all cases X-rays show a progressive integration, with new bone formation. Our substitutes have been histologically studied in nine cases, four to fifteen months after implantation. New bone formation around and in the substitute is impressive. Indeed, their good mechanical properties without loss of biological quality is the most relevant feature of these BCPs, leading to a wider indication field; therefore we have now abandoned the use of any bony auto, allo or xenograft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basle MF, Rebel A, Grizon F, Daculsi G, Passuti N, Filmon R (1993) Cellular response to calcium phosphate ceramics implanted in rabbit bone. J Mater Sci 4: 273–280

    CAS  Google Scholar 

  2. Bucholz RW, Carlton A, Holmes RE (1987) Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am 18: 323–324

    CAS  PubMed  Google Scholar 

  3. Cazeau C, Doursounian L, Thouzard RC (1995) Utilisation de céramiques de phosphate tricalcique dans la réparation des fractures du plateau tibial. Rev Chir Orthop suppl II: 190–191

    Google Scholar 

  4. Cheung K, Haak MH (1989) Growth of osteoblasts on porous calcium phosphate ceramic: an in vitro model for biocompatibility study. Biomaterials 10: 724–736

    Article  Google Scholar 

  5. Daculsi D, Legeros RZ, Mitre D (1990) Crystal dissolution of biological and ceramic apatites. Calcif Tissue Int 46: 20–27

    Article  CAS  PubMed  Google Scholar 

  6. Daculsi G, Passuti N (1990) Effect of the macroporosity for osseous substitution of calcium phosphate ceramics. Biomaterials 11: 86–87

    CAS  PubMed  Google Scholar 

  7. Daculsi G, Passuti N, Delecrin J, Kerebel B (1989) Etude comparative de céramiques bioactives en phosphate de calcium après implantation en site osseux chez le chien. Rev Chir Orthop 75: 65–71

    CAS  PubMed  Google Scholar 

  8. De Bruijn JD (1998) Calcium phosphates and other bone substitutes in tissue engeneering. North Sea Biomaterials, 14th ESB Conference The Hague. Dutch Society for Biomaterials, Bilthoven

    Google Scholar 

  9. De Bruijn JD, Klein CPAT, De Groot K, Van Blitterswik CA (1993) Influence of crystal structure on the establishment of the bonecalcium interface in vitro. Cells Materials 3: 407–417

    Google Scholar 

  10. De Groot K (1980) Bioceramics of calcium phosphates. Biomaterials 1: 47

    Article  PubMed  Google Scholar 

  11. Eggli PS, Muller W, Schenk RK (1988) Porous hydroxyapatite and tricalcium phosphate cylinders with two pore size ranges implanted in the cancellous bone of rabbits. Clin Orthop 232:127–138

    CAS  Google Scholar 

  12. Flatey TJ, Lynch KL, Benson M (1983) Tissus response to implants of calcium phosphate ceramics in the rabbit spine. Clin Orthop 17: 256–252

    Google Scholar 

  13. Frayssinet P, Trouillet JL, Rouquet N, Azimus E, Autefage A (1993) Osteointegration of macroporous calcium phosphate ceramics having a different chemical compsition. Biomaterials 14: 423–429

    Article  CAS  PubMed  Google Scholar 

  14. Galois L, Mainard D, Bordji K, Clement D, Delagoutte JP (1996) Influence de la taille des pores sur la réhabitation osseuse de 2 céramiques phosphocalciques. Actualités en Biomatériaux (vol III). Romillat, Paris: 361–380

    Google Scholar 

  15. Gao TJ, Lindholm TS, Kommonen B, Ragm P, Paronzin A, Lindholm TC (1995) Microscopic evaluation of bone-implant contact between hydroxyapatite bioactive glass and tricalcium phosphate implanted in sheep. Biomaterials 16:1175–1179

    Article  CAS  PubMed  Google Scholar 

  16. Gouin F, Passuti N, Delecrin J, Bainvel JV (1993) Utilisation d'une céramique poreuse biphasique dans le comblement des tumeurs bénignes. Rev Chir Orthop 79: 554

    Google Scholar 

  17. Husson JL, Poncer R, Chatelier P, Morel G, Polard JL, Lancien G (1995) Phosphates tricalciques et arthrodèses lombaires: résultats cliniques, radiographiques et histologiques. Rev Chir Orthop 81 (suppl II): 158

    Google Scholar 

  18. Jarcho M (1981) Calcium phosphate ceramics as hard tissue prosthetics. Clin Orthop 157:259–278

    CAS  Google Scholar 

  19. Jasty V, Jarcho M, Gumaer KL, Sauerschell R, Drobeck HP (1978) Bone tissue response to dense hydroxyapatite discs implants in mongrel dogs. 9th Congr Electron microsc 2: 274

    Google Scholar 

  20. Kitsugi T, Yamamuro T, Nakamura T, Oka M (1995) Transmission electron microscopy observations at the interface of bone and four types of calcium phosphate ceramics. Biomaterials 16:1101–1107

    Article  CAS  PubMed  Google Scholar 

  21. Klein CPAT, Abe Y, Hosono H, De Groot K (1984) Different calcium phosphates bioglass ceramic implanted in rabbit cortical bone. Biomaterials 5: 362–364

    Article  CAS  PubMed  Google Scholar 

  22. Klein CPAT, Parka P, Den Hollander W (1989) Macroporous calcium phosphate bioceramics in dog femora: histological study of interface and biodegradation. Biomaterials 10:59–63

    Article  CAS  PubMed  Google Scholar 

  23. Kotani S, Fujita Y, Kitsugi T, Nakamura T, Yamamuro Y (1991) Bone bonding mechanism of beta-tricalcium phosphate. J Biomed Mat Res 12:1303–1315

    Article  Google Scholar 

  24. Lascart T, Favard L, Burdin P, Traore O (1998) Utilisation du phosphate tricalcique dans les ostéotomies tibiales d'addition interne. Ann Orthop Ouest 30:137–141

    Google Scholar 

  25. Le Huec JC, Clement D (1998) Evolution of the local calcium content around irradiated beta-tricalcium phosphate ceramic implants: in vivo study in the rabbit. Biomaterials 19: 733–738

    Article  PubMed  Google Scholar 

  26. Le Huec JC, Lesprit C, Clément D, Chanveaux A, Le Rebeller A (1997) Tricalcium phosphate ceramics and allografts as bone substitutes for spinal fusion in idiopathic scoliosis. Acta Orthop Belgica 63: 202–211

    Google Scholar 

  27. Le Huec JC, Schaeverbeke T, Clément D, Faber J, Le Rebeller A (1995) Influence of porosity on the mechanical resistance of hydroxyapatite ceramics under compressive stress. Biomaterials 16:113–117

    Article  PubMed  Google Scholar 

  28. Meyrueis JP, Cazenave A, Sohier-Meyrueis A (1996) Substituts osseux: critères de choix. Maitrise Orthopédique 57

  29. Nasca RJ, Lemons JE, Montgomery R (1991) Evaluation of cryopreserved bone and synthetic biomaterials in promoting spinal fusion. Spine 16: 330–333

    Article  Google Scholar 

  30. Neo M, Kotani S, Fujita Y, Nakamura T, Yamamuro Y (1992) Differences in ceramicbone interface between surface-active ceramics and resorbable ceramics. J Biomed Mat Res 26: 255–267

    Article  CAS  Google Scholar 

  31. Oonishi H, Iwaki Y, Kin N, Kushitani S (1997) Hydroxyapatite in revision of total hip replacements with massive acetabular defects. J Bone Joint Surg 7913: 87–92

    Article  Google Scholar 

  32. Passutu N, Daculsi G, Rogez JM, Martin S, Bainvel JV (1989) Macroporous calcium phosphate ceramics performance in human spine fusion. Clin Orthop 248:169–176

    Google Scholar 

  33. Pollo C, De Coexe B, Collard A, Gilliard C (1997) Discectomie cervicale antérieure et fusion intersomatique par greffons d'hydroxyapatite et vis plaque. Rachis 9: 39–46

    Google Scholar 

  34. Ripamonti U (1996) Osteoinduction in porous hydroxyapatite implanted in heterotopic sites of different animal models. Biomaterials 17: 31–35

    Article  CAS  PubMed  Google Scholar 

  35. Ripamonti U, Duneas N (1996) Tissue engineering of bone by osteoinductive biomaterials. MRS Bulletin 21: 36–43

    Article  Google Scholar 

  36. Schwartz C, Lecestre P (1997) First clinical results of new synthetic biphasic ceramics for use as bone substitute.13th ESB Conference, Gteborg.

  37. Schwartz C, Lecestre P (1997) Résultats préliminaires de l'utilisation de céramiques biphasées de synthèse comme substituts osseux en chirurgie orthopédique et traumatologique. GECO, Les Arcs.

    Google Scholar 

  38. Senter HJ, Koryna R, Kemp WR (1989) Anterior cervical discectomy with hydroxyapatite fusion. Neurosurg 25: 39–43

    Article  CAS  Google Scholar 

  39. Shimazaki K, Mooney V (1985) Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J Orthopaedics Research 3: 301–305

    Article  CAS  Google Scholar 

  40. Trecant M, Delecrin J, Royer J, Goyenvalle E, Daculsi G (1994) Mechanical changes in macroporous calcium phosphate ceramics after implantation in bone. Clin Mat 15: 233–240

    Article  Google Scholar 

  41. Uchida A, Araki N, Shinto Y, Yoshikawa H, Kurisaki E, Ono K (1990) The use of calcium hydroxyapatite ceramic in bone tumour surgery. J Bone Joint Surg 72B: 298–302

    Google Scholar 

  42. Uchida A, Nade S, Mc Cartney E, Ching W (1984) The use of ceramics for bone replacement. A comparative study of three porous ceramics. J Bone Joint Surg 66B: 269–275

    Google Scholar 

  43. Van Blitterswijk CA, Kuijpers W, Daems WT, De Groot K (1985) Macropore tissue ingrowth: a quantitative and qualitative study on hydroxyapatite ceramic. Biomaterials 7: 137–143

    Article  Google Scholar 

  44. Winter M, Griss P, De Groot K, Taga H, Heimke G, Sawai K (1981) Comparative histocompatibility testing of seven calcium phosphate ceramics. Biomaterials 2: 159–161

    Article  CAS  PubMed  Google Scholar 

  45. Yang Z, Yan H, Tong W, Zou P, Chen W, Zhang X (1996) Osteogenesisin extraskeletal implanted porous calcium phosphate ceramics: variability among different kinds of animals. Biomaterials 17: 2131–2137

    Article  CAS  PubMed  Google Scholar 

  46. Yokozeki H, Hayashi T, Nakagawa T, Kurosawa H, Shibuya K, Ioku K (1998) Influence of surface microstructure on the reaction of the active ceramics in vivo. J Mater Sci 9: 381–384

    CAS  Google Scholar 

  47. Yoshii S, Kakutani Y, Yamamuro T, Nakamura T, Kitsugi T, Oka M (1988) Strength of bonding between a glass-ceramic and the surface of bone cortex. J Biomed Mat Res 22: 327–338

    Article  CAS  Google Scholar 

  48. Yuan H, De Bruijn JD, Yang Z, Li Y, De Groot K, Zhang X (1998) Osteoinduction by calcium phosphate biomaterials North Sea Biomaterials, 14th ESB Conference The Hague. Dutch Society for Biomaterials, Bilthoven

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper presented at the 1998 meeting of GECO (Arc 1800, Bourg-Saint-Maurice, France)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, C., Lecestre, P., Fraysinet, P. et al. Bone substitutes. Eur J Orthop Surg Traumatol 9, 161–165 (1999). https://doi.org/10.1007/BF00542583

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00542583

Key words

Navigation