Skip to main content
Log in

Polarity, diversity, and plasticity in proximal tubule transport systems

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

This contribution first reviews the distribution of transport systems within the plasma membrane of the proximal tubule cell (polarity), with particular emphasis on transport systems located in the basal-lateral plasma membranes and on the role of cascade coupling in tubular transport. Then, the differences between transport systems in the pars convoluta and the pars recta of the proximal tubule are discussed (diversity). Finally, evidence is presented that changes in the microenvironment of sodium cotransport systems can alter the mode of operation of the transporter (plasticity). The two examples mainly addressed are the sodium-d-glucose and the sodium-glutamate cotransport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kinne R, Murer H, Kinne-Saffran E, Thees M, Sachs G (1975) Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes. J Membr Biol 21: 375–395

    Google Scholar 

  2. Sacktor B, and Kinsella L (1985) Hormonal effects on sodium cotransport systems. Ann NY Acad Sci 456: 438–444

    Google Scholar 

  3. Ullrich KJ (1986) Polarity of the proximal tubular cell. Comparison of luminal and contraluminal transport systems for hexoses, dicarboxylates, and sulfate. In: Krück F, Thurau K (eds) Endocrine regulation of electrolyte balance. Springer, Berlin, Heidelberg New York, pp 28–35

    Google Scholar 

  4. Murer H, Gmaj P (1986) Transport studies in plasma membrane vesicles isolated from renal cortex. Kidney Int 30: 171–186

    Google Scholar 

  5. Kinne R (1985) Transport function of renal cell membranes: sodium cotransport systems. In: Kinne RKH (ed) Renal biochemistry. Cells, membranes, molecules. Elsevier, Amsterdam, pp 99–142

    Google Scholar 

  6. Ullrich KJ (1979) Sugar, amino acid, and Na+ cotransport in the proximal tubule. Annu Rev Physiol 41: 181–195

    Google Scholar 

  7. Lang F, Messner G, Rehwald W (1986) Electrophysiology of sodium-coupled transport in proximal renal tubules. Am J Physiol 250: F953-F962

    Google Scholar 

  8. Fritsch G, Haase W, Rumrich G, Fasold H, Ullrich KJ (1984) A stopped flow capillary perfusion method to evaluate contraluminal transport parameters of methylsuccinate from interstitium into renal proximal tubular cells. Pflügers Arch 400: 250–256

    Google Scholar 

  9. Aronson PS (1985) Properties of the renal Na+/H+ exchanger. Ann NY Acad Sci 456: 220–228

    Google Scholar 

  10. Sabolić J, Burckhardt G (1983) Proton pathways in rat renal brush border and basolateral membranes. Biochim Biophys Acta 734: 210–220

    Google Scholar 

  11. Ives HE, Yee VJ, Warnock DG (1983) Asymmetric distribution of the Na+/H+ antiporter in the renal proximal tubule epithelial cell. J Biol Chem 258: 13513–13516

    Google Scholar 

  12. Murer H, Hopfer U, Kinne R (1976) Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine and kidney. Biochem J 154: 597–604

    Google Scholar 

  13. Kinne-Saffran E, Kinne R (1986) Proton pump activity and Mg-ATPase activity in rat kidney cortex brushborder membranes. Effect of “proton ATPase” inhibitors. Pflügers Arch 407: S180-S185

    Google Scholar 

  14. Jans AWH, Amsler K, Griewel B, Kinne RKH (1987) Regulation of intracellular pH in LLC-PK1 cells studied using31P-NMR spectroscopy. Biochim Biophys Acta 927: 203–212

    Google Scholar 

  15. Aronson PE, Nee J, Suhm MA (1982) Modifier role of internal H+ in activating the Na+/H+ exchanger in renal microvillus membrane vesicles. Nature 299: 161–163

    Google Scholar 

  16. Nord EP, Goldfarb D, Mikhail N, Moradeshagi P, Hafezi A, Vaystub S, Cragoe Jr EJ, Fine LG (1986) Characteristics of the Na+/H+ antiporter in the intact renal proximal tubular cell. Am J Physiol 250: F539-F550

    Google Scholar 

  17. Cohn DE, Klahr S, Hammerman MR (1983) Metabolic acidosis and parathyroidectomy increase Na+/H+ exchange in brush border vesicles. Am J Physiol 245: F217-F222

    Google Scholar 

  18. Tsai CJ, Ives HE, Alpern RJ, Yee VJ, Warnock DG, Rector Jr FC (1984) Increased Vmax from Na+/H+ antiporter activity in proximal tubule brush border vesicles from rabbits with metabolic acidosis. Am J Physiol 247: F339-F343

    Google Scholar 

  19. Kinsella J, Cudjik T, Sacktor B (1984) Na+/H+ exchange in isolated renal brush border membrane vesicles in response to metabolic acidosis: kinetic effects. J Biol Chem 259: 13224–13227

    Google Scholar 

  20. Kinne-Saffran E, Kinne R, Sattler EL, Döll G (1987) Biochemical properties of the proton translocating ATPase in rat kidney cortex brush border membranes: effect of inhibitors, pH profile and molecular weight. In: Kovačević Z, Guder WG (eds) Molecular nephrology. Biochemical aspects of kidney function. De Gruyter, Berlin, New York, pp 43–49

    Google Scholar 

  21. Friedrich T, Sabotni J, Burckhardt G (1986) Identification of the renal Na+/H+ exchange with N, N'-dicyclohexylcarbodiimide (DCCD) and amiloride analogues. J Membr Biol 94: 253–266

    Google Scholar 

  22. Chaillet RJ, amsler K, Boron WF (1986) Optical measurements of intracellular pH in single LLC-PK1 cells: demonstration of Cl-HCO3 exchange. Proc Natl Acad Sci USA 83: 522–526

    Google Scholar 

  23. Alpern RJ, Chambers M (1987) Basolateral membrane Cl/HCO3 exchange in the rat proximal convoluted tubule. Na-dependent and- independent modes. J Gen Physiol 89: 581–598

    Google Scholar 

  24. Grassl SM, Holohan PD, Ross CR (1987) HCO 3 transport in basolateral membrane vesicles isolated from rat renal cortex. J Biol Chem 262: 2682–2687

    Google Scholar 

  25. Jans AWH, Krijnen ES, Luig J, Kinne RKH (1987) A31P-NMR study on the recovery of intracellular pH in LLC-PK1/Cl4 cells from intracellular alkalinization. Biochim Biophys Acta 931: 326–334

    Google Scholar 

  26. Ullrich KJ, Papavassiliou F (1987) Contraluminal bicarbonate transport in the proximal tubule of the rat kidney. Pflügers Arch 410: 501–504

    Google Scholar 

  27. Alpern RJ (1985) Mechanism of basolateral membrane H+/OH/HCO 3 transport in the rat proximal convoluted tubule. A sodium-coupled electrogenic process. J Gen Physiol 86: 613–636

    Google Scholar 

  28. Yoshitomi K, Burckhardt BC, Frömter E (1985) Rheogenic sodium-bicarbonate cotransport in the peritubular cell membrane of rat renal proximal tubule.Pflügers Arch 405: 360–366

    Google Scholar 

  29. Akiba T, Alpern RJ, Eveloff J, Calamina J, Warnock DG (1986) Electrogenic sodium/bicarbonate cotransport in rabbit renal cortical basolateral membrane vesicles. J Clin Invest 78: 1472–1478

    Google Scholar 

  30. Grassl SM, Aronson PS (1986) Na+/HCO 3 Co-transport in basolateral membrane vesicles isolated from rabbit renal cortex. J Biol Chem 261: 8778–8783

    Google Scholar 

  31. Soleimani M, Grassl SM, Aronson PS (1987) Stoichiometry of Na+−HCO 3 cotransport in basolateral membrane vesicles isolated from rabbit renal cortex. J Clin Invest 79: 1276–1280

    Google Scholar 

  32. Boron WF, Boulpaep EL (1983) Intracellular pH regulation in the renal proximal tubule of the salamander. Basolateral HCO 3 transport. J Gen Physiol 81: 53–94

    Google Scholar 

  33. Kinne R (1986) Epithelial transport: the interplay between ion gradients and cell polarity. In: Alvarado F, van Os CH (eds) Ion-gradient coupled transport. INSERM Symp No. 26. Elsevier, Amsterdam, pp 255–265

    Google Scholar 

  34. Wolff NA, Kinne R, Elger B, Goldstein L (1987) Renal handling of taurine,l-alanine,l-glutamate andd-glucose in Opsanus tau: studies on isolated brush border membrane vesicles. J Comp Physiol B 157: 573–581

    Google Scholar 

  35. Karniski LP, Aronson PS (1985) Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci USA 82: 6362–6365

    Google Scholar 

  36. Karniski LP, Lawrence P, Aronson PS (1987) Anion exchange pathways for Cl transport in rabbit renal microvillus membranes. Am J Physiol 253: F513–521

    Google Scholar 

  37. Bidet M, Merot J, Tauc M, Poujeol P (1988) Role of monocarboxylic acid transport in intracellular pH regulation of isolated proximal cells. Biochim Biophys Acta 938: 257–269

    Google Scholar 

  38. Ullrich KJ, Rumrich G (1988) Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am J Physiol 254: F453-F462

    Google Scholar 

  39. Burckhardt G (1984) Sodium-dependent dicarboxylate transport in rat renal basolateral membrane vesicles. Pflügers Arch 401: 254–261

    Google Scholar 

  40. Renfro JL, Pritchard JB (1982) H+-dependent sulfate secretion in the marine teleost renal tubule. Am J Physiol 243: F150-F159

    Google Scholar 

  41. Chung ST, Park YS, Hong SK (1970) Effect of cations on transport of weak organic acids in rabbit kidney slices. Am J Physiol 219: 30–33

    Google Scholar 

  42. Podevin RA, Boumendil-Podevin EF (1977) Monovalent cation and ouabain effects on PAH uptake by rabbit kidney slices. Am J Physiol 232: F239-F247

    Google Scholar 

  43. Podevin RA, Boumendil-Podevin EF, Priol C (1978) Concentrative PAH transport by rabbit kidney slices in the absence of metabolic energy. Am J Physiol 235: F278-F285

    Google Scholar 

  44. Häberle ES (1981) Characteristics of p-aminohippurate transport in the mammalian kidney. In: Greger R, Lang F, Silbernagl S (eds) Renal transport of organic solutes. Springer, Berlin Heidelberg New York, pp 189–209

    Google Scholar 

  45. Maxild J, Møller JV, Sheikh MI (1981) Involvement of Na+−K+-ATPase in p-aminohippurate transport by rabbit kidney slices. J Physiol (Lond) 315 189–201

    Google Scholar 

  46. Sheikh MI, Møller JV (1982) Na+-gradient-dependent stimulation of renal transport of p-aminohippurate. Biochem J 208: 243–246

    Google Scholar 

  47. Møller JV, Sheikh MI (1983) The renal organic anion transport system: pharmacological, physiological, and biochemical aspects. Pharmacol Rev 34: 315–358

    Google Scholar 

  48. Berner W, Kinne R (1976) Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflügers Arch 361: 269–277

    Google Scholar 

  49. Hori R, Takano M, Okano T, Kitazawa S, Inui KI (1982) Mechanisms of p-aminohippurate transport by brush border and basolateral membrane vesicles isolated from rat kidney cortex. Biochim Biophys Acta 692: 97–100

    Google Scholar 

  50. Eveloff J (1987) p-Aminohippurate transport in basallateral membrane vesicles from rabbit renal cortex: stimulation by pH and sodium gradients. Biochim Biophys Acta 897: 474–480

    Google Scholar 

  51. Shimada H, Moewes B, Burckhardt G (1987) Indirect coupling to Na+ of p-aminohippuric acid uptake into rat renal basolateral membrane vesicles. Am J Physiol 253: F795-F801

    Google Scholar 

  52. Scriver CR, Chesney RW, McInnes RR (1976) Genetic aspects of renal tubular transport. Diversity and topology of carriers. Kidney Int 9: 149–171

    Google Scholar 

  53. Scriver CR, Tenenhouse HS (1985) Genetics and mammalian transport systems. Ann NY Acad Sci 456: 384–397

    Google Scholar 

  54. Turner RJ, Moran A (1982) Heterogeneity of sodium-dependentd-glucose transport sites along the proximal tubule: evidence from vesicle studies. Am J Physiol 242: F406-F414

    Google Scholar 

  55. Turner RJ, Moran A (1982) Further studies of proximal tubular brush border membraned-glucose transport heterogeneity. J Membr Biol 70: 37–45

    Google Scholar 

  56. Jørgensen KE, Sheikh MI (1984) Renal transport of monocarboxylic acids. Heterogeneity of lactate-transport systems along the proximal tubule. Biochem J 223: 803–807

    Google Scholar 

  57. Jørgensen KE, Sheikh MI (1985) Meehanisms of uptake of ketone bodies by luminal-membrane vesicles. Biochim Biophys Acta 814: 23–34

    Google Scholar 

  58. Jørgensen KE, Sheikh MI (1986) Characteristics of uptake of short chain fatty acids by luminal membrane vesicles from rabbit kidney. Biochim Biophys Acta 860: 632–640

    Google Scholar 

  59. Kragh-Hansen U, Røigaard-Petersen H, Jacobsen C, Sheikh MI (1984) Renal transport of neutral amino acids. Tubular localization of Na+-dependent phenylalanineand glucose-transport systems. Biochem J 220: 15–24

    Google Scholar 

  60. Røigaard-Petersen H, Sheikh MI (1984) Renal transport of neutral amino acids. Demonstration of Na+-independent and Na+-dependent electrogenic uptake ofl-proline, hydroxy-l-proline and 5-oxo-l-proline by luminal-membrane vesicles. Biochem J 220: 25–33

    Google Scholar 

  61. Røigaard-Petersen H, Jacobsen C, Sheikh MI (1987) H+-l-proline cotransport by vesicles from pars convoluta of rabbit proximal tubule. Am J Physiol 253: F15-F20

    Google Scholar 

  62. Røigaard-Petersen H, Jacobsen C, Sheikh MI (1988) Transport ofl-proline by luminal membrane vesicles from pars recta of rabbit proximal tubule. Am J Physiol 254: F628-F633

    Google Scholar 

  63. Burckhardt G, Stern H, Murer H (1981) The influence of pH on phosphate transport into rat renal brush border membrane vesicles. Pflügers Arch 390: 191–197

    Google Scholar 

  64. Samarzija J, Molnar V, Frömter E (1983) pH-Dependence of phosphate absorption in rat renal proximal tubule. Proc Eur Dial Transplant Assoc 19: 779–783

    Google Scholar 

  65. Murer H, Ahearn G, Amstutz M, Biber J, Brown C, Gmaj P, Hagenbuch B, Malmstroem K, Mohrmann I, Mohrmann M, Stange G (1985) Cotransport systems for inorganic sulfate and phosphate in small intestine and renal proximal tubule. Ann NY Acad Sci 456: 139–152

    Google Scholar 

  66. Brunette MG, Chan M, Maag U, Béliveau R (1984) Phosphate uptake by superficial and deep nephron brush border membranes. Effect of the dietary phosphate and parathyroid hormones. Pflügers Arch 400: 356–362

    Google Scholar 

  67. Turner ST, Dousa TP (1985) Phosphate transport by brushborder membranes from superficial and juxtamedullary cortex. Kidney Int 27: 879–885

    Google Scholar 

  68. Molitoris BA, Kinne R (1987) Ischemia induces surface membrane dysfunction. Mechanism of altered Na+-dependent glucose transport. J Clin Invest 80: 647–654

    Google Scholar 

  69. Carrière B, Le Grimellec C (1986) Effects of benzyl alcohol on enzyme activities andd-glucose transport in kidney brush-border membranes. Biochim Biophys Acta 857 131–138

    Google Scholar 

  70. Yuli I, Wilbrandt W, Shinitzky M (1981) Glucose transport through cell membranes of modified lipid fluidity. Biochemistry 20: 4250–4256

    Google Scholar 

  71. Turner RJ, Kempner ES (1982) Radiation inactivation studies of the renal brush-border membrane phlorizinbinding protein. J Biol Chem 257: 10794–10797

    Google Scholar 

  72. Lin JT, Szwarc K, Kinne R, Jung CY (1984) Structural state of the Na+/d-glucose cotransporter in calf kidney brush-border membranes. Target size analysis of Na+-dependent phlorizin binding and Na+-dependentd-glucose transport. Biochim Biophys Acta 777: 201–208

    Google Scholar 

  73. Kinne R, Sommerfeld D, Heinz E (1988) Modulation of sodium-cotransport systems by other ions. Biophys Chem 29: 105–109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinne, R.K.H. Polarity, diversity, and plasticity in proximal tubule transport systems. Pediatr Nephrol 2, 477–484 (1988). https://doi.org/10.1007/BF00853444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00853444

Key words

Navigation