Skip to main content
Log in

Neurons of the A1/A2 region in the guinea pig medulla oblongata containing glucagon, glicentin, and dopamin-β-hydroxylase immunoreactivity

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Glucagon- (GLU-IR), glicentin- (GLI-IR) and dopamine-beta-hydroxylase (DBH-IR) immunoreactive neurons were mapped in the medulla oblongata of colchicine pretreated guinea pigs. Numerous GLU-IR and GLI-IR perikarya are located in the area of the nucleus ambiguus, in the adjacent formatio reticularis, and less frequently in the nucleus reticularis lateralis, the nuclei raphe obscurus and commissuralis and the caudal part of the nucleus solitarius. In these nuclei, the coexistence of glicentin and glucagon within the same perikarya is demonstrated. DBH-IR is also found in neurons of the nuclei commissuralis, solitarius and reticularis lateralis (A1/A2 system of Dahlström and Fuxe 1964, 1965). However, a coexistence of GLU/GLI-IR and DBH-IR within the same neuron is not observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Colony PC, Helmstaedter V, Moody AJ, Garaud JC, Forssmann WG (1982) Glucagon and glicentin immunoreactive cells in human colon. Cell Tissue Res 221:483–491

    Google Scholar 

  • Conlon JM, Samson WK, Dobbs RE, Orci L, Unger RH (1979) Glucagon-like polypeptides in canine brain. Diabetes 28:700–702

    Google Scholar 

  • Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand (Suppl. 232) 62:1–55

    Google Scholar 

  • Dahlström A, Fuxe K (1965) Evidence for the existence of monoamine containing neurons in the CNS. II. Experimentelly induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol Scand (Suppl. 247) 62:1–36

    Google Scholar 

  • Dorn A, Bernstein H-G, Hahn H-J, Kostmann G, Ziegler M (1980) Regional distribution of glucagon-like immunoreactive material in the brain of rats and sand rats. An immunohistochemical investigation. Acta Histochem 66:269–272

    Google Scholar 

  • Elger K-H (1983) Immunhistochemische Untersuchungen über das Vorkommen von glucagonartigen Peptiden im Zentralnervensystem des Meerschweinchens. Dissertation Heidelberg

  • Forssmann W-G, Pickel VM, Reinecke M, Hock D, Metz J (1981) Immunohistochemistry and immunocytochemistry of nervous tissue. In: Techniques in Neuroanatomical Research. Heym Ch, Forssmann W-G, (eds). Springer, Berlin, Heidelberg, New York, pp 171–205

    Google Scholar 

  • Garaud JC, Eloy R, Moody AJ, Stock C, Grenier JF (1980) Glucagon-and glicentin-immunoreactive cells in the human digestive tract. Cell Tissue Res 213:121–136

    Google Scholar 

  • Guillemin R (1982) The brain as an endocrine organ — update 1981. Endocrinol Exp 16:151–162

    Google Scholar 

  • Hamilton RB, Ellenberger H, Liskowsky D, Schneiderman N (1981) Parabrachial area as mediator of bradycardia in rabbits. J Autonom Nerv Syst 4:261–281

    Google Scholar 

  • Hökfelt T, Fahrenkrug J, Tatemoto K, Mutt V, Werner S, Hulting A-L, Terenius L, Chang KJ (1983) The PHI (PHI-27)/corticotropin-releasing factor/enkephalin immunoreactive hypothalamic neuron: possible morphological basis for integrated control of prolactin, corticotropin, and growth hormone secretion. Proc Natl Acad Sci USA 80:895–898

    Google Scholar 

  • Kalia M (1981) Brain stem localization of vagal preganglionic neurons. J Autonom Nerv Sys 3:451–481

    Google Scholar 

  • Krieger DT (1983) Brain Peptides. What, where, and why? Science 222:975–985

    Google Scholar 

  • Krieger DT, Liotta AS, Brownstein MJ, Zimmerman EA (1980) ACTH, β-Lipotropin, and related peptides in brain, pituitary and blood. Recent Prog Horm Res 36:277–336

    Google Scholar 

  • Loewy AD, Wallach JH, McKellar S (1981) Efferent connections of the ventral medulla oblongata in the rat. Brain Res Rev 3:63–80

    Google Scholar 

  • Matsushita M, Okado N (1981) Cells of origin of brainstem afferents to lobules I and II of the cerebellar anterior lobe in the cat. Neuroscience 6:2393–2405

    Google Scholar 

  • Moody AJ, Sundby F (1980) Radioimmunoassay of gut-glucagon-like immunoreactants. In: Gastrointestinal hormones, Glass GBJ (ed). Raven Press, New York, pp 831–839

    Google Scholar 

  • Moody AJ, Frandsen EK, Jacobsen H, Sundby F, Orci L (1976) The structural and immunologic relationship between gut GLIs and glucagon. Metabolism (Suppl. 1) 25:1336–1338

    Google Scholar 

  • Moody AJ, Jacobsen H, Sundby F, Frandsen K, Beatens D, Orci L (1977) Heterogeneity of gut glucagon-like immunoreactivity (GLI). In: Glucagon: its role in physiology and clinical medicine. Foa PP, Bajaj JS (eds). Springer, Berlin, Heidelberg, New York, pp 129–135

    Google Scholar 

  • O'Donohue TL, Dorsa DM (1982) The opiomelanotropinergic neuronal and endocrine system. Peptides 3:353–395

    Google Scholar 

  • Palkovits M, Jakobowitz DM (1974) Topographic atlas of catecholamine and acetyl-cholinesterase-containing neurons in the rat brain. J Comp Neurol 157:29–42

    Google Scholar 

  • Pearson J, Goldstein M, Markey K, Brandeis L (1983) Human brainstem catecholamine neuronal anatomy as indicated by immunocytochemistry with antibodies to tyrosine hydroxylase. Neuroscience 8:3–32

    Google Scholar 

  • Ravazzola M, Siperstein A, Moody AJ, Sundby F, Jacobsen H, Orci L (1979) Glicentin immunoreactive cells: their relationship to glucagon-producing cells. Endocrinology 105:499–508

    Google Scholar 

  • Ravazzola M, Orci L (1980) Glucagon and glicentin immunoreactivity are topologically segregated in the granule of the human pancreatic. A cell. Nature 284:66–67

    Google Scholar 

  • Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O (1980) Cerebellar afferents from motor nuclei of cranial nerves, the nucleus of the solitary tract, and nuclei coeruleus and parabrachialis in sheep, demonstrated with retrograde transport of horseradish peroxidase. Brain Res 197:200–206

    Google Scholar 

  • Sasaki H, Ebitani I, Tominaga M, Yamatani K, Yawata Y, Hara M (1980) Glucagon-like substance in the canine brain. Endocrinol Jpn 1:135–140

    Google Scholar 

  • Somana R, Walberg F (1979) Cerebellar afferents from the nucleus of the solitary tract. Neurosci Lett 11:41–47

    Google Scholar 

  • Sternberger LA (1979) Immunocytochemistry. Wiley, New York, pp 104–169

    Google Scholar 

  • Tager H, Hohenboken M, Markese J, Dinerstein RJ (1980) Identification and localization of glucagon-related peptides in rat brain. Proc Natl Acad Sci USA 77:6229–6233

    Google Scholar 

  • Thim L, Moody AJ (1981) The primary structure of porcine glicentin (proglucagon). Reg. Pept 2:139–150

    Google Scholar 

  • Triepel J (1982) Vasoactive intestinal polypeptide (VIP) in the medulla oblongata of the guinea pig. Neurosci Lett 29:73–78

    Google Scholar 

  • Triepel J, Elger KH, Thiekötter G, Marquard E, Forssmann W-G (1980) VIP- and glucagon-like immunoreactive neurons and axons in guinea pig brain. XI. Congreso internacional de Anatomia Ciudad de Mexico

  • Triepel J, Elger KH, Forssman WG (1982) Glicentin-immunoreactive perikarya and varicosities in the guinea pig central nervous system. Neurosci Lett 30:285–289

    Google Scholar 

  • Vranic M, Engerman R, Doi K, Morita S, Yip CC (1976) Extrapancreatic glucagon and GLI. Extrapancreatic glucagon in the dog. Metabolism 25:1469–1473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft, Carvas SFB 90

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triepel, J., Elger, K.H., Mader, J. et al. Neurons of the A1/A2 region in the guinea pig medulla oblongata containing glucagon, glicentin, and dopamin-β-hydroxylase immunoreactivity. Anat Embryol 170, 239–245 (1984). https://doi.org/10.1007/BF00318727

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318727

Key words

Navigation