Skip to main content
Log in

A heuristic approach to fed-batch optimisation of streptokinase fermentation

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Previous studies have shown that the rate of formation of streptokinase, a secondary metabolite, in batch fermentation is proportional to the specific growth rate of the biomass, which in turn is inhibited by its substrate and the primary product (lactic acid). These kinetics suggest the suitability of fed-batch operation to increase the yield of streptokinase. A near-optimal feed policy has been calculated by the chemotaxis algorithm, and it shows a substrate feed rate decreasing nonlinearly and vanishing after 11 hours. This is followed by batch fermentation for a further 8 hours, at the end of which 12% more streptokinase is generated than by purely batch fermentation. Further improvements in productivity are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

k dh−1 :

decay constant for active cells

k ph−1 :

decay constant for streptokinase

K Igl−1 :

inhibition constant for lactic acid

KS gl−1 :

inhibition constant for substrate

M gl−1 :

lactic acid concentration

P gl−1 :

streptokinase concentration

Q 1h−1 :

substrate feed rate

S gl−1 :

substrate concentration

S ingl−1 :

inlet concentration of substrate

t h:

time

t bh:

end-point of batch fermentation

t fh:

end-point of fed-batch fermentation

V l:

volume of broth in fermenter

V 0 l:

initial value of V (at t=0)

V ml:

maximum value of V

X gl−1 :

total biomass concentration

X agl−1 :

concentration of active biomass

Y MX :

yield coefficient for lactic acid from biomass

Y PX :

yield coefficient for streptokinase from biomass

Y XS :

yield coefficient for biomass from substrate

μ h−1 :

specific growth rate of biomass

μ mh−1 :

maximum specific growth rate

References

  1. Estrada, M.P.; Hernandez, L.; Perez, A.; Rodriguez, P.; Serrano, R.; Rubiera, R.; Pedraza, A.; Padrou, G.; Antuch, W.; de la Fuente, J.; Herrera, L.: High level expression of streptokinase in Escherichia coli. Bio/Technol. 10 (1992) 1138–1142

    Google Scholar 

  2. Hagenson, M.J.; Holden, K.A.; Parker, K.A.; Wood, P.J.; Cruze, J.A.; Fuke, M.; Hopkins, T.R.; Stroman, D.W.: Expression of streptokinase in Pichia pastoris yeast. Enzyme Microb. Technol. 11 (1989) 650–656

    Google Scholar 

  3. Huang, T.T.; Malke, H.; Ferretti, J.J.: The streptokinase gene of group A streptococci: cloning expression in Escherichia coli, and sequence analysis. Mol. Biol. 2 (1989) 197–205

    Google Scholar 

  4. Malke, H.; Ferretti, J.J.: Streptokinase: cloning, expression and excretion by Escherichia coli. Proc. Natl. Acad. Sci. USA. 81 (1984) 3557–3561

    Google Scholar 

  5. Lee, S.B.; Seressiotsis, A.; Bailey, J.E.: A kinetic model for product formation in unstable recombinant populations. Biotechnol. Bioeng. 27 (1985) 1699–1709

    Google Scholar 

  6. Stuebner, K.; Boschke, E.; Wolf, K.-H.; Langer, J.: Kinetic analysis and modelling of streptokinase fermentation. Acta Biotechnol. 11 (1991) 467–477

    Google Scholar 

  7. Modak, J.M.; Lim, H.C.; Tayeb, J.J.: General characteristics of optimal feed rate profiles for various fed-batch processes. Biotechnol. Bioeng. 28 (1986) 1396–1407

    Google Scholar 

  8. Yamane, T.; Shimizu, S.: Fed-batch techniques in microbial processes. Adv. Biochem. Eng./Biotechnol. 30 (1984) 147–194

    Google Scholar 

  9. Wolf, K.-H.; Venus, J.; Stiebitz, O.: Acta Biotechnol. 7 (1987) 55–59

    Google Scholar 

  10. Constatinides, A.: Application of rigorous optimization methods to the control and operation of fermentation processes. Ann. N.Y. Acad. Sci. 326 (1979) 193–221

    Google Scholar 

  11. Fishman, V.M.; Biryukov, V.V.: Kinetic model of secondary metabolite production and its use in computation of optimal conditions. Biotechnol. Bioeng. 4 (1974) 647–662

    Google Scholar 

  12. San, K.-Y.; Stephanopoulos, G.: Optimization of fed-batch penicillin fermentation: a case of singular optimal control with state constraints. Biotechnol. Bioeng. 34 (1989) 72–78

    Google Scholar 

  13. Takamatsu, T.; Hashimoto, I.; Shioya, S.; Mizuhara, K.; Koike, T.; Ohno, H.: Theory and practice of optimal control in continuous fermentation processes. Automatica 11 (1975) 141–148

    Google Scholar 

  14. Wei, D.; Parulekar, S.J.; Weigand, W.A.: Multivariable control of continuous and fed-batch bioreactors. Ann. N.Y. Acad. Sci. 589 (1990) 508–528

    Google Scholar 

  15. Gagnepain, J.P.; Seborg, D.E.: Analysis of process interactions with application to multiloop control system design. Ind. Eng. Chem. Proc. Des. Develop. 21 (1982) 5–11

    Google Scholar 

  16. Lim, H.C.; Tayeb, Y.J.; Modak, J.M.: Computation algorithms for optimal feed rates for a class of fed-batch fermentations: numerical results for penicillin and cell mass production. Biotechnol. Bioeng. 28 (1986) 1408–1420

    Google Scholar 

  17. Cuthrell, J.E.; Biegler, L.T.: Simultaneous optimization and solution methods for batch reactor control problems. Comput. Chem. Eng. 13 (1989) 49–62

    Google Scholar 

  18. Hong, J.: Optimal substrate feeding policy for a fed-batch fermentation with substrate and product inhibition kinetics. Biotechnol. Bioeng. 28 (1986) 1421–1431

    Google Scholar 

  19. Luus, R.: Optimization of fed-batch fermenters by iterative dynamic programming. Biotechnol. Bioeng. 41 (1993) 599–602

    Google Scholar 

  20. Montague, G.A.: Ward, A.C.: A suboptimal solution to the optimisation of bioreactors using the chemotaxis algorithm. Process Biochem. 29 (1994) 489–496

    Google Scholar 

  21. Bremmerman, H.J.; Anderson, R.W.: An alternative to back propagation: A simple rule for synaptic modification for neural network training and memory. Intenal Report, Department of Mathematics, Univ. California, Berkeley, CA (1989)

    Google Scholar 

  22. Patnaik, P.R.: Parametric sensitivity of streptokinase fermentation through model reduction by a semi-empirical approach. Hung, J. Ind. Chem. 23 (1994) in press

  23. Asenjo, J.A.; Sun, W.-H.; Spencer, J.L.: Optimization of batch processes involving simultaneous enzymatic and microbial reactions. Biotechnol. Bioeng. 37 (1991) 1097–1094

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patnaik, P.R. A heuristic approach to fed-batch optimisation of streptokinase fermentation. Bioprocess Engineering 13, 109–112 (1995). https://doi.org/10.1007/BF00420437

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420437

Keywords

Navigation