Skip to main content
Log in

The role of brush border enzymes in tubular reabsorption of disaccharides

A microperfusion study in rat kidney

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

Renal tubular reabsorption of maltose, sucose and lactose were studied in vivo et situ by continuous microperfusion of single proximal convolutions of rat kidney. The14C-label of maltose (2.5 mmol/l) was removed from the lumen of the proximal tubule at about the same rate as found for glucose. Maltose reabsorption was completely inhibited in presence of 30 mmol/l glucose or of 0.1 mmol/l phlorizin. Chemical analysis of the samples showed a complete conversion of maltose into glucose within a perfusion distance of 2 mm. It is concluded from these results that within the tubular lumen maltose is split very rapidly by a brush border glucosidase. The short half time of this process permits the breakdown product glucose to be almost completely reabsorbed subsequently within the proximal tubule.

In contrast, sucrose and lactose were neither split nor reabsorbed by the tubule brush border.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baeyer, H. von, Conta, Ch. von, Häberle, D.: Determination of transport constants for glucose in proximal tubules of the rat kidney. Pflügers Arch.343, 273 (1973)

    Google Scholar 

  2. Baumann, K., Vick, H.: Is there any evidence for a transport system for glucose derived from sucrose in rat kidney? In: Heinz, E. (ed.). Na-linked Transport of Organic Solutes, Berlin-Heidelberg-New York: Springer 1972

    Google Scholar 

  3. Bott, P. A.: Renal excretion of creatinine inNecturus. A reinvestigation by direct analysis of glomerular and tubular fluid for creatinine and inulin. Am. J. Physiol.168, 107 (1952)

    Google Scholar 

  4. O'Brian, D., Lowenstein, L. M.: Biochim. Biophys. Acta339, 1 (1973); quoted from Ref. [5].

    Google Scholar 

  5. de Burlet, G., Sudaka, P.: Purification de la maltase neutre renale humaine. Biochimie58, 621 (1976)

    Google Scholar 

  6. Carone, F. A., Pullman, Th. N., Oparil, S., Nakamura, S.: Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubule. Am. J. Physiol.230, 1420 (1976)

    Google Scholar 

  7. Dahlquist, A., Thomson D. L.: The digestion and absorption of maltose and trehalose by the intact rat. Acta Physiol. Scand.59, 111 (1963)

    Google Scholar 

  8. Dahlquist, A., Thomson, D. L.: The digestion and absorption of sucrose by the intact rat. J. Physiol. (Lond.)167, 193 (1963)

    Google Scholar 

  9. Dahlquist, A., Thomson, D. L.: The digestion and absorption of lactose by the intact rat. Acta Physiol. Scand.61, 20 (1964)

    Google Scholar 

  10. Dantzler, W. H., Silbernagl, S.: Renal tubular reabsorption of taurine, γ-aminobutyric acid (GABA) and β-alanine studied by continuous microperfusion. Pflügers Arch.367, 123 (1976)

    Google Scholar 

  11. Deetjen, P., Boylan, J. W.: Glucose reabsorption in the rat kidney. Microperfusion studies. Pflügers Arch.299, 19 (1968)

    Google Scholar 

  12. Deetjen, P., Silbernagl, S.: Some new developments in continuous microperfusion technique. Yale J. Biol. Med.45, 301 (1972)

    Google Scholar 

  13. Good, N. E., Winget, G. D., Winter, W., Conolly, T. N., Izawa, S., Singh, R. M.: Hydrogen ion buffer for biological research. Biochemistry5, 467 (1966)

    Google Scholar 

  14. Gray, G. M.: Intestinal disaccharides deficiences and glucosegalactose malabsorption (J. B. Stanbury, J. B. Wyngaarden, D. S. Frederickson, eds.), 3rd ed., p. 1453. New York: McGraw-Hill 1972

    Google Scholar 

  15. Haworth, J. C.: Urinary excretion of lactose and sucrose by mentally retarded patients. Lancet1962 II, 725

  16. Kashgarian, M., Stöckle, H., Gottschalk, C. W., Ullrich, K. J.: Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (Diabetes insipidus). Pflügers Arch. ges. Physiol.277, 89 (1963)

    Google Scholar 

  17. Keith, N. M., Power, M. H.: The urinary excretion of sucrose and its distribution in the blood after intravenous injection into normal men. Am. J. Physiol.120, 203 (1937)

    Google Scholar 

  18. van Liew, J. B., Deetjen, P., Boylan, J. W.: Glucose reabsorption in the rat kidney. Dependence on glomerular filtration. Pflügers Arch295, 232 (1967)

    Google Scholar 

  19. Loeschke, K., Baumann, K., Renschler, H., Ullrich, K. J.: Differenzierung zwischen aktiver and passiver Komponente des D-Glukosetransportes am proximalen Konvolut der Rattenniere. Pflügers Arch.305, 118 (1969)

    Google Scholar 

  20. Oparil, S., Carone, F. A., Pullman, Th. N., Nakamura, S.: Inhibition of proximal tubular hydrolysis and reabsorption of bradykinin by peptides. Am. J. Physiol.231, 743 (1976)

    Google Scholar 

  21. Peterson, D. R., Carone, F. A.: Angiotensin II handling by isolated perfused proximal straight kidney tubules. Kidney Int.6, 84A (1974)

    Google Scholar 

  22. Pullman, T. N., Oparil, S., Carone, F. A.: Fate of labeled antiotensin II microperfused into individual nephrons in the rat. Am. J. Physiol.228, 747 (1975)

    Google Scholar 

  23. Quehenberger, P., Silbernagl, S., Deetjen, P.: pH-Stabilität verschiedener Puffer bei kontinuierlicher Perfusion proximaler Tubuli. Nieren-und Hochdruck-Krankheiten3, 280 (1974)

    Google Scholar 

  24. Riffart, W., Decker, P., Wagner, H.: Papierchromatographische Untersuchungen über die Ausscheidung von Milchzucker im Harn gesunder Schwangerer und Wöchnerinnen. Arch. Gynäk.181, 607 (1952)

    Google Scholar 

  25. Rosenfeld, E. L., Lukomskaya, I. S., Popowa, I. A.: Acid and neutral poly-and oligoglucosidases in animal tissue. Enzymologia30, 1–11 (1965)

    Google Scholar 

  26. Silbernagl, S.: Aminosäuren-Transport in der Niere: Ergebnisse der Mikroperfusion. Biologie in unserer Zeit4, 161 (1974)

    Google Scholar 

  27. Silbernagl, S.: The role of the brushborder peptidase for renal tubular reabsorption of oligopeptides. Pflügers Arch.365, R14 (1976)

    Google Scholar 

  28. Silbernagl, S.: Intratubular splitting of peptides and their reabsorption as single amino acids from the proximal convolution of rat kidney. A microperfusion study. Kidney Int.11, 219 (1977)

    Google Scholar 

  29. Silbernagl, S.: Tubular handling of γ-glutamyl-peptides and of disaccharides. A microperfusion study in rat kidney. Pflügers Arch.368, R13 (1977)

    Google Scholar 

  30. Silbernagl, S.: Tubular reabsorption of peptides in the form of free amino acids. Microperfusion experiments in rat kidney. Proceedings of the Internat. Union of Physiol. Sc., Vol. XII: XXVII. International Congress, p. 230, Paris 1977

  31. Silbernagl, S.: The role of brush border enzymes in tubular reabsorption of peptides and disaccharides. A microperfusion study in the proximal convolution of the rat kidney. Proceedings of the II. European Colloquium on Renal Physiology, Balatonfüred, Hungary 1977

  32. Silverman, M.: Brush border disaccharidase in dog kidney and their spatial relationship to glucose transport receptors. J. Clin. Invest.52, 2486 (1973)

    Google Scholar 

  33. Sonnenberg, H., Deetjen, P.: Methode zur Durchströmung einzelner Nephronabschnitte. Pflügers Arch. ges. Physiol.278, 669 (1964)

    Google Scholar 

  34. Stahl, E.: Dünnschicht-Chromatographie, 2nd ed., p. 817. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  35. Steinitz, K.: The renal excretion of sucrose in normal man; comparison with inulin. Am. J. Physiol.129, 252 (1940)

    Google Scholar 

  36. Stevenson, F. K.: Biochim. Biophys. Acta266, 144 (1972), quoted from [5]

    Google Scholar 

  37. Stuhlfauth, K., Hofmann, E., Heinz, F.: Lactosämie und Lactosurie vor und nach Lactosebelastung. Klin. Wschr.40, 1151 (1962)

    Google Scholar 

  38. Vomhof, D. W., Tucker, T. C.: J. Chromatogr.17, 300 (1965), quoted from [34]

    Google Scholar 

  39. Wendel, A., Hahn, R., Guder, W. G.: On the role of γ-glutamyltransferase in renal tubular amino acid reabsorption. In: Renal Metabolism in Relation to Renal Function (U. Schmidt, U. C. Dubach, eds.), Bern-Stuttgart-Wien: Huber 1976

    Google Scholar 

  40. Wendel, A., Silbernagl, S., Heinle, H.: The degradation of glutathione derivatives in the rat kidney. 4th International Symposium on Biochemical Aspects of Kidney Function. Bern-Stuttgart-Wien: Huber 1977 (in press)

    Google Scholar 

  41. Weser, E., Sleisenger, M. H.: Metabolism of circulating disaccharides in man and the rat. J. Clin. Invest.46, 499 (1967)

    Google Scholar 

  42. Windhager, E. E.: Micropuncture techniques and nephron function, pp. 42–45. London: Butterworth 1968

    Google Scholar 

  43. Young, J. M., Weser, E.: Effect of insulin on the metabolism of circulating maltose. Endocrinology86, 426 (1970)

    Google Scholar 

  44. Young, J. M., Weser, E.: The metabolism of circulating maltose in man. J. Clin. Invest.50, 986 (1971)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grant No. 1740 of the Austrian “Fonds zur Förderung der wissenschaftlichen Forschung”

Parts of this study were reported at the 48th meeting of the German Physiological Society [29] and at the 2nd European Colloquium on Renal Physiology [31]

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silbernagl, S., Vetter, G. The role of brush border enzymes in tubular reabsorption of disaccharides. Pflugers Arch. 371, 141–145 (1977). https://doi.org/10.1007/BF00580782

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00580782

Key words

Navigation