Skip to main content
Log in

Scanning probe microscopy for testing ultrafast electronic devices

  • Invited Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Scanning force microscopy has been developed as a practical, non-contact probing technique for measuring voltage waveforms at internal nodes of integrated devices and circuits. Dynamic voltage contrast is achieved with high spatial and temporal resolution. The factors contributing to system bandwidth, voltage sensitivity and spatial resolution are discussed. Time-domain and frequency-domain measurements of silicon and gallium arsenide circuits are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J.WEINGARTEN, M. J. W.RODWELL and D. M.BLOOM,IEEE J. Quantum Electron. 24 (1988) 198.

    Google Scholar 

  2. T.NAGATSUMA,IEICE Trans. Electron. 76 (1993) 55.

    Google Scholar 

  3. J. T. L.THONG (ed.),Electron Beam Testing Technology. Microdevices, Physics and Fabrication Technologies (Plenum Press, New York, 1993) p. 274.

    Google Scholar 

  4. P. G.MAY, J.HALBOUT and G. L. T.CHIU,IEEE J. Quantum Electron. 24 (1987) 234.

    Google Scholar 

  5. A. S.HOU, F.HO and D. M.BLOOM,Electron. Lett. 28 (1992) 2302.

    Google Scholar 

  6. G.NUNESJr and M. R.FREEMAN,Science 262 (1993) 1029.

    Google Scholar 

  7. S.WEISS, D. F.OGLETREE, D.BOTKIN, M.SALMERON and D. S.CHEMLA,Appl. Phys. Lett. 63 (1993) 2567.

    Google Scholar 

  8. K.TAKEUCHI and Y.KASAHARA,Appl. Phys. Lett. 63 (1993) 3548.

    Google Scholar 

  9. J.NEES, S.WAKANA and C.CHEN, inUltrafast Phenomena, vol. 7, vol. 9, edited by P. F.Barbara, W. H.Knox, G. A.Mourou and A. H.Zewail (Optical Society of America, Dana Point, CA, 1994) pp. 139. (AlsoOpt Quantum Electron 28 (1996) 843.)

    Google Scholar 

  10. Y.MARTIN, D. W.ABRAHAM and H. K.WICKRAMASINGHE,Appl. Phys. Lett. 52 (1988) 1103.

    Google Scholar 

  11. C. C.WILLIAMS, W. P.HOUGH and S. A.RISHTON,Appl. Phys. Lett. 55 (1989) 203.

    Google Scholar 

  12. G.BINNIG and H.ROHRER,Helvetica Physica Acta 55 (1982) 726.

    Google Scholar 

  13. G.BINNIG, C. F.QUATE and C.GERBER,Phys. Rev. Lett. 56 (1986) 930.

    Google Scholar 

  14. R.ERLANDSSON, G. M.McCLELLAND, C. M.MATE and S.CHIANG,J. Vac. Sci. & Technol. A 6 (1988) 266.

    Google Scholar 

  15. U. MUELLER, S. HOFSCHEN, C. BOEHM, J. SPRENGEPIEL, E. KUBALEK and A. BEUER, inMicroelectron. Eng. (to be published).

  16. C.BOHM, C.ROTHS and E.KUBALEK,Microelectron. Eng. 24 (1994) 91.

    Google Scholar 

  17. G. E.BRIDGES, R. A.SAID and D. J.THOMSON,Electron. Lett. 29 (1993) 1448.

    Google Scholar 

  18. R. A.SAID, G. E.BRIDGES and D. J.THOMSON,IEEE Trans. Instr. Meas. 43 (1994) 469.

    Google Scholar 

  19. T. R.ALBRECHT and C. F.QUATE,J. Vac. Sci. & Technol. A 6 (1988) 271.

    Google Scholar 

  20. C. A.SPINDT,Surf. Sci. 266 (1992) 145.

    Google Scholar 

  21. D. W.VAN DERWEIDE,Appl. Phys. Lett. 65 (1994) 881.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, A.S., Nechay, B.A., Ho, F. et al. Scanning probe microscopy for testing ultrafast electronic devices. Opt Quant Electron 28, 819–841 (1996). https://doi.org/10.1007/BF00820151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00820151

Keywords

Navigation